Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 112(48): 14936-41, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26627243

ABSTRACT

Rhodnius prolixus not only has served as a model organism for the study of insect physiology, but also is a major vector of Chagas disease, an illness that affects approximately seven million people worldwide. We sequenced the genome of R. prolixus, generated assembled sequences covering 95% of the genome (∼ 702 Mb), including 15,456 putative protein-coding genes, and completed comprehensive genomic analyses of this obligate blood-feeding insect. Although immune-deficiency (IMD)-mediated immune responses were observed, R. prolixus putatively lacks key components of the IMD pathway, suggesting a reorganization of the canonical immune signaling network. Although both Toll and IMD effectors controlled intestinal microbiota, neither affected Trypanosoma cruzi, the causal agent of Chagas disease, implying the existence of evasion or tolerance mechanisms. R. prolixus has experienced an extensive loss of selenoprotein genes, with its repertoire reduced to only two proteins, one of which is a selenocysteine-based glutathione peroxidase, the first found in insects. The genome contained actively transcribed, horizontally transferred genes from Wolbachia sp., which showed evidence of codon use evolution toward the insect use pattern. Comparative protein analyses revealed many lineage-specific expansions and putative gene absences in R. prolixus, including tandem expansions of genes related to chemoreception, feeding, and digestion that possibly contributed to the evolution of a blood-feeding lifestyle. The genome assembly and these associated analyses provide critical information on the physiology and evolution of this important vector species and should be instrumental for the development of innovative disease control methods.


Subject(s)
Adaptation, Physiological/genetics , Chagas Disease , Host-Parasite Interactions/genetics , Insect Vectors , Rhodnius , Trypanosoma cruzi/physiology , Animals , Base Sequence , Gene Transfer, Horizontal , Humans , Insect Vectors/genetics , Insect Vectors/parasitology , Molecular Sequence Data , Rhodnius/genetics , Rhodnius/parasitology , Wolbachia/genetics
2.
Biochimie ; 112: 41-8, 2015 May.
Article in English | MEDLINE | ID: mdl-25731714

ABSTRACT

The triatomine insect, Rhodnius prolixus, is a vector of Trypanosoma cruzi, a protozoan parasite that causes Chagas disease. The parasite must overcome immune response and microbiota to develop inside the midgut of triatomines. In this study, we expressed, purified and characterized a Kazal-type inhibitor from the midgut of R. prolixus, named RpTI, which may be involved in microbiota - T. cruzi interactions. The qPCR showed that the RpTI transcript was primarily expressed in tissues from the intestinal tract and that it was upregulated in the anterior midgut after T. cruzi infection. A 315-bp cDNA fragment encoding the mature protein was cloned into the pPIC9 vector and expressed in Pichia pastoris system. Recombinant RpTI (rRpTI) was purified on a trypsin-Sepharose column and had a molecular mass of 11.5 kDa as determined by SDS-PAGE analysis. This protein inhibited trypsin (Ki = 0.42 nM), whereas serine proteases from the coagulation cascade were not inhibited. Moreover, trypanocidal assays revealed that rRpTI did not interfere in the viability of T. cruzi trypomastigotes. The RpTI transcript was also knocked down by RNA interference prior to infection of R. prolixus with T. cruzi. The amount of T. cruzi in the anterior midgut was significantly lower in RpTI knockdown insects compared to the non-silenced groups. We also verified that the bacterial load is higher in the anterior midgut of silenced and infected R. prolixus compared to non-silenced and infected insects. Our results suggest that T. cruzi infection increases the expression of RpTI to mediate microbiota modulation and is important for parasite immediately after infection with R. prolixus.


Subject(s)
Insect Proteins , Insect Vectors , Intestines/microbiology , Microbiota , Rhodnius , Trypanosoma cruzi/metabolism , Trypsin Inhibitor, Kazal Pancreatic , Animals , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Vectors/genetics , Insect Vectors/metabolism , Insect Vectors/microbiology , Rhodnius/genetics , Rhodnius/metabolism , Rhodnius/microbiology , Trypsin Inhibitor, Kazal Pancreatic/genetics , Trypsin Inhibitor, Kazal Pancreatic/metabolism
3.
Ticks Tick Borne Dis ; 6(1): 16-30, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25238688

ABSTRACT

Serine protease inhibitors (serpins) are a diverse family of proteins that is conserved across taxa. The diversity of Amblyomma americanum serpins (AAS) is far more complex than previously thought as revealed by discovery of 57 and 33 AAS transcripts that are respectively expressed in male and female A. americanum ticks, with 30 found in both. While distinct reproductively, both male and female metastriate ticks, such as A. americanum, require a blood meal. Thus, 30 AAS sequences found in both male and female ticks could play important role(s) in regulating tick feeding and thus represent attractive candidates for anti-tick vaccine development. Of significant interest, 19 AAS sequences expressed in male and female ticks are also part of the 48 AAS sequences expressed in fed female tick salivary glands or midguts; two organs through which the tick interacts with host blood and immune response factors. Considered the most important domain for serpin function, the reactive center loop (RCL) is further characterized by a single 'P1' site amino acid residue, which is central to determining the protease regulated by the serpin. In this study, a diversity of 17 different P1 site amino acid residues were predicted, suggesting that A. americanum serpins potentially regulate a large number of proteolytic pathways. Our data also indicate that some serpins in this study could regulate target protease common to all tick species, in that more than 40% of AAS show 58-97% inter-species amino acid conservation. Of significance, 24% of AAS showed 62-100% inter-species conservation within the functional RCL domain, with 10 RCLs showing ≥90-100% conservation. In vertebrates, serpins with basic residues at the P1 site regulate key host defense pathways, which the tick must evade to feed successfully. Interestingly, we found that AAS sequences with basic or polar uncharged residues at the putative P1 site are more likely to be conserved across tick species. Another notable observation from our data is that AAS sequences found only in female ticks and those found in both males and females, but not those found only in male ticks, were highly conserved in other tick species. While descriptive, this study provides the basis for more in-depth studies exploring the roles of serpins in tick feeding physiology.


Subject(s)
Computational Biology , Ixodidae/genetics , Serine Proteinase Inhibitors/genetics , Serpins/genetics , Amino Acid Sequence , Animals , Female , Gastrointestinal Tract/metabolism , Ixodidae/enzymology , Male , Molecular Sequence Data , Phylogeny , Salivary Glands/metabolism , Sequence Alignment , Sequence Analysis, DNA
4.
PLoS One ; 9(5): e98614, 2014.
Article in English | MEDLINE | ID: mdl-24878588

ABSTRACT

Rhipicephalus microplus is an obligate hematophagous ectoparasite of cattle and an important biological vector of Anaplasma marginale in tropical and subtropical regions. The primary determinants for A. marginale transmission are infection of the tick gut, followed by infection of salivary glands. Transmission of A. marginale to cattle occurs via infected saliva delivered during tick feeding. Interference in colonization of either the tick gut or salivary glands can affect transmission of A. marginale to naïve animals. In this study, we used the tick embryonic cell line BME26 to identify genes that are modulated in response to A. marginale infection. Suppression-subtractive hybridization libraries (SSH) were constructed, and five up-regulated genes {glutathione S-transferase (GST), cytochrome c oxidase sub III (COXIII), dynein (DYN), synaptobrevin (SYN) and phosphatidylinositol-3,4,5-triphosphate 3-phosphatase (PHOS)} were selected as targets for functional in vivo genomic analysis. RNA interference (RNAi) was used to determine the effect of tick gene knockdown on A. marginale acquisition and transmission. Although RNAi consistently knocked down all individually examined tick genes in infected tick guts and salivary glands, only the group of ticks injected with dsCOXIII failed to transmit A. marginale to naïve calves. To our knowledge, this is the first report demonstrating that RNAi of a tick gene is associated with a failure of A. marginale transmission.


Subject(s)
Anaplasma marginale/genetics , Anaplasmosis/transmission , Electron Transport Complex IV/genetics , Rhipicephalus/genetics , Ticks/microbiology , Anaplasmosis/genetics , Anaplasmosis/microbiology , Animals , Cattle , Cell Line , Gene Expression/genetics , RNA Interference , Salivary Glands/microbiology
5.
PLoS Negl Trop Dis ; 8(1): e2594, 2014.
Article in English | MEDLINE | ID: mdl-24416461

ABSTRACT

The bloodsucking hemipteran Rhodnius prolixus is a vector of Chagas' disease, which affects 7-8 million people today in Latin America. In contrast to other hematophagous insects, the triatomine gut is compartmentalized into three segments that perform different functions during blood digestion. Here we report analysis of transcriptomes for each of the segments using pyrosequencing technology. Comparison of transcript frequency in digestive libraries with a whole-body library was used to evaluate expression levels. All classes of digestive enzymes were highly expressed, with a predominance of cysteine and aspartic proteinases, the latter showing a significant expansion through gene duplication. Although no protein digestion is known to occur in the anterior midgut (AM), protease transcripts were found, suggesting secretion as pro-enzymes, being possibly activated in the posterior midgut (PM). As expected, genes related to cytoskeleton, protein synthesis apparatus, protein traffic, and secretion were abundantly transcribed. Despite the absence of a chitinous peritrophic membrane in hemipterans - which have instead a lipidic perimicrovillar membrane lining over midgut epithelia - several gut-specific peritrophin transcripts were found, suggesting that these proteins perform functions other than being a structural component of the peritrophic membrane. Among immunity-related transcripts, while lysozymes and lectins were the most highly expressed, several genes belonging to the Toll pathway - found at low levels in the gut of most insects - were identified, contrasting with a low abundance of transcripts from IMD and STAT pathways. Analysis of transcripts related to lipid metabolism indicates that lipids play multiple roles, being a major energy source, a substrate for perimicrovillar membrane formation, and a source for hydrocarbons possibly to produce the wax layer of the hindgut. Transcripts related to amino acid metabolism showed an unanticipated priority for degradation of tyrosine, phenylalanine, and tryptophan. Analysis of transcripts related to signaling pathways suggested a role for MAP kinases, GTPases, and LKBP1/AMP kinases related to control of cell shape and polarity, possibly in connection with regulation of cell survival, response of pathogens and nutrients. Together, our findings present a new view of the triatomine digestive apparatus and will help us understand trypanosome interaction and allow insights into hemipteran metabolic adaptations to a blood-based diet.


Subject(s)
Insect Proteins/genetics , Rhodnius/genetics , Transcriptome , Animals , Female , Gastrointestinal Tract , Insect Proteins/biosynthesis , Latin America , Male , Molecular Sequence Data , Sequence Analysis, DNA
6.
J Biol Chem ; 288(49): 35058-67, 2013 Dec 06.
Article in English | MEDLINE | ID: mdl-24174530

ABSTRACT

In insects, eggshell hardening involves cross-linking of chorion proteins via their tyrosine residues. This process is catalyzed by peroxidases at the expense of H2O2 and confers physical and biological protection to the developing embryo. Here, working with Rhodnius prolixus, the insect vector of Chagas disease, we show that an ovary dual oxidase (Duox), a NADPH oxidase, is the source of the H2O2 that supports dityrosine-mediated protein cross-linking and eggshell hardening. RNAi silencing of Duox activity decreased H2O2 generation followed by a failure in embryo development caused by a reduced resistance to water loss, which, in turn, caused embryos to dry out following oviposition. Phenotypes of Duox-silenced eggs were reversed by incubation in a water-saturated atmosphere, simultaneous silencing of the Duox and catalase genes, or H2O2 injection into the female hemocoel. Taken together, our results show that Duox-generated H2O2 fuels egg chorion hardening and that this process plays an essential role during eggshell waterproofing.


Subject(s)
NADPH Oxidases/metabolism , Rhodnius/enzymology , Amino Acid Sequence , Animals , Chorion/physiology , Female , Genes, Insect , Hydrogen Peroxide/metabolism , Molecular Sequence Data , NADPH Oxidases/chemistry , NADPH Oxidases/genetics , Oogenesis/genetics , Oogenesis/physiology , Ovary/enzymology , Phylogeny , Protein Structure, Tertiary , RNA Interference , Rhodnius/genetics , Rhodnius/physiology , Sequence Homology, Amino Acid
7.
PLoS One ; 8(10): e76128, 2013.
Article in English | MEDLINE | ID: mdl-24146826

ABSTRACT

Cyclin-dependent kinases (CDKs) are a family of serine/threonine kinases essential for cell cycle progression. Herein, we describe the participation of CDKs in the physiology of Rhipicephalus microplus, the southern cattle tick and an important disease vector. Firstly, amino acid sequences homologous with CDKs of other organisms were identified from a R. microplus transcriptome database in silico. The analysis of the deduced amino acid sequences of CDK1 and CDK10 from R. microplus showed that both have caspase-3/7 cleavage motifs despite their differences in motif position and length of encoded proteins. CDK1 has two motifs (DKRGD and SAKDA) located opposite to the ATP binding site while CDK10 has only one motif (SLLDN) for caspase 3-7 near the ATP binding site. Roscovitine (Rosco), a purine derivative that inhibits CDK/cyclin complexes by binding to the catalytic domain of the CDK molecule at the ATP binding site, which prevents the transfer of ATP's γphosphoryl group to the substrate. To determine the effect of Rosco on tick CDKs, BME26 cells derived from R. microplus embryo cells were utilized in vitro inhibition assays. Cell viability decreased in the Rosco-treated groups after 24 hours of incubation in a concentration-dependent manner and this was observed up to 48 hours following incubation. To our knowledge, this is the first report on characterization of a cell cycle protein in arachnids, and the sensitivity of BME26 tick cell line to Rosco treatment suggests that CDKs are potential targets for novel drug design to control tick infestation.


Subject(s)
Arthropod Proteins/chemistry , CDC2 Protein Kinase/chemistry , Cyclin-Dependent Kinases/chemistry , Protein Kinase Inhibitors/pharmacology , Purines/pharmacology , Rhipicephalus/drug effects , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Amino Acid Motifs , Animals , Arthropod Proteins/antagonists & inhibitors , Arthropod Proteins/classification , Arthropod Proteins/metabolism , CDC2 Protein Kinase/antagonists & inhibitors , CDC2 Protein Kinase/classification , CDC2 Protein Kinase/metabolism , Caspases/chemistry , Caspases/metabolism , Catalytic Domain , Cattle , Cell Line , Cell Survival/drug effects , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/classification , Cyclin-Dependent Kinases/metabolism , Escherichia coli/chemistry , Escherichia coli/genetics , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Sequence Data , Phylogeny , Protein Binding , Protein Kinase Inhibitors/chemistry , Purines/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/classification , Recombinant Proteins/metabolism , Rhipicephalus/cytology , Rhipicephalus/enzymology , Roscovitine , Salivary Glands/cytology , Salivary Glands/drug effects , Sequence Alignment , Structural Homology, Protein
8.
PLoS One ; 8(5): e61203, 2013.
Article in English | MEDLINE | ID: mdl-23658688

ABSTRACT

Chagas disease, or American trypanosomiasis, is a parasitic disease caused by the protozoan Trypanosoma cruzi and is transmitted by insects from the Triatominae subfamily. To identify components involved in the protozoan-vector relationship, we constructed and analyzed cDNA libraries from RNA isolated from the midguts of uninfected and T. cruzi-infected Triatoma infestans, which are major vectors of Chagas disease. We generated approximately 440 high-quality Expressed Sequence Tags (ESTs) from each T. infestans midgut cDNA library. The sequences were grouped in 380 clusters, representing an average length of 664.78 base pairs (bp). Many clusters were not classified functionally, representing unknown transcripts. Several transcripts involved in different processes (e.g., detoxification) showed differential expression in response to T. cruzi infection. Lysozyme, cathepsin D, a nitrophorin-like protein and a putative 14 kDa protein were significantly upregulated upon infection, whereas thioredoxin reductase was downregulated. In addition, we identified several transcripts related to metabolic processes or immunity with unchanged expressions, including infestin, lipocalins and defensins. We also detected ESTs encoding juvenile hormone binding protein (JHBP), which seems to be involved in insect development and could be a target in control strategies for the vector. This work demonstrates differential gene expression upon T. cruzi infection in the midgut of T. infestans. These data expand the current knowledge regarding vector-parasite interactions for Chagas disease.


Subject(s)
Gene Expression Profiling , Intestinal Mucosa/metabolism , Intestines/parasitology , Triatoma/genetics , Triatoma/parasitology , Trypanosoma cruzi/physiology , Animals , Cloning, Molecular , DNA, Complementary/genetics , Host-Parasite Interactions/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Up-Regulation
9.
Biochem Biophys Res Commun ; 413(2): 241-7, 2011 Sep 23.
Article in English | MEDLINE | ID: mdl-21875578

ABSTRACT

The insect Triatoma infestans is a vector of Trypanosoma cruzi, the etiological agent of Chagas disease. A cDNA library was constructed from T. infestans anterior midgut, and 244 clones were sequenced. Among the EST sequences, an open reading frame (ORF) with homology to a cystatin type 2 precursor was identified. Then, a 288-bp cDNA fragment encoding mature cystatin (lacking signal peptide) named Tigutcystatin was cloned fused to a N-terminal His tag in pET-14b vector, and the protein expressed in Escherichia coli strain Rosetta gami. Tigutcystatin purified and cleaved by thrombin to remove His tag presented molecular mass of 11 kDa and 10,137 Da by SDS-PAGE and MALDI-TOF mass spectrometry, respectively. Purified Tigutcystatin was shown to be a tight inhibitor towards cruzain, a T. cruzi cathepsin L-like enzyme (K(i)=3.29 nM) and human cathepsin L (K(i)=3.78 nM). Tissue specific expression analysis showed that Tigutcystatin was mostly expressed in anterior midgut, although amplification in small intestine was also detected by semi quantitative RT-PCR. qReal time PCR confirmed that Tigutcystatin mRNA is significantly up-regulated in anterior midgut when T. infestans is infected with T. cruzi. Together, these results indicate that Tigutcystatin may be involved in modulation of T. cruzi in intestinal tract by inhibiting parasite cysteine proteases, which represent the virulence factors of this protozoan.


Subject(s)
Cysteine Proteinase Inhibitors/biosynthesis , Insect Vectors/metabolism , Insect Vectors/parasitology , Salivary Cystatins/biosynthesis , Triatoma/metabolism , Triatoma/parasitology , Trypanosoma cruzi/enzymology , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , Cysteine Proteinase Inhibitors/genetics , Gastrointestinal Tract/metabolism , Insect Vectors/genetics , Male , Molecular Sequence Data , Salivary Cystatins/genetics , Triatoma/genetics
10.
Insect Biochem Mol Biol ; 40(2): 119-25, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20079838

ABSTRACT

Acyl-CoA esters have many intracellular functions, acting as energy source, substrate for metabolic processes and taking part in cell signaling. The acyl-CoA-binding protein (ACBP), a highly conserved 10 kDa intracellular protein, binds long- and medium-chain acyl-CoA esters with very high affinity, directing them to specific metabolic routes and protecting them from hydrolysis. An ACBP gene sequence was identified in the genome of Rhodnius prolixus. This ACBP gene (RpACBP-1) was expressed in all analyzed tissues and quantitative PCR showed that expression was highest in posterior midgut. In this tissue, ACBP gene expression increased in the first day after blood meal ( approximately 10-fold) and then decreased to unfed levels in the seventh day after meal. Injection of serotonin (5-hydroxytryptamine; 5-HT), a neuroamine released in the hemolymph after the start of feeding, increased the expression of this gene in the midgut of unfed females, reaching levels similar to those observed in fed insects. This effect of injected 5-HT was inhibited by spiperone, an antagonist of 5-HT mammalian receptors, that was also able to block the physiological increase in RpACBP-1 expression observed after feeding. Injection of cholera toxin or dibutyryl-cAMP also resulted in the stimulation of this gene expression. These data reveal a transcriptional regulatory mechanism in R. prolixus, that is triggered by 5-HT. In this way, a novel role for 5-HT is proposed, as a regulator of ACBP gene expression and, consequently, taking part in the control of lipid metabolism.


Subject(s)
Diazepam Binding Inhibitor/metabolism , Gene Expression Regulation/physiology , Rhodnius/genetics , Serotonin/physiology , Amino Acid Sequence , Animals , Base Sequence , DNA , Female , Molecular Sequence Data , Reverse Transcriptase Polymerase Chain Reaction
11.
Insect Biochem Mol Biol ; 36(4): 322-35, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16551546

ABSTRACT

A blood-sucking habit appeared independently several times in the course of arthropod evolution. However, from more than a million species of insects and arachnids presently living on earth, only about 14,000 species developed the capacity to feed on vertebrate blood. This figure suggests the existence of severe physiological constraints for the evolution of hematophagy, implying the selective advantage of special adaptations related to the use of blood as a food source. Digestion of vertebrate hemoglobin in the midgut of blood-feeding arthropods results in the production of large amounts of heme, a potentially cytotoxic molecule. Here we will review mechanisms by which heme can exert biological damage, together with a wide spectrum of adaptations developed by blood-feeding insects and ticks to counteract its deleterious effects. In spite of the existence of a great molecular diversity of protective mechanisms, different hematophagous organisms developed convergent solutions that may be physiologically equivalent.


Subject(s)
Adaptation, Physiological , Arthropods/physiology , Heme/metabolism , Animals , Antioxidants/physiology , Arthropods/parasitology , Feeding Behavior , Hemeproteins/physiology , Lipid Peroxidation , Oxidative Stress
12.
Insect Biochem Mol Biol ; 32(4): 361-7, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11886770

ABSTRACT

We have previously shown that Rhodnius prolixus' eggs and hemolymph are pink due to the presence of the hemeprotein Rhodnius heme-binding protein (RHBP). In the hemolymph it functions as an antioxidant. Nevertheless, its function in eggs has not been determined. Here we present evidence that RHBP is a source of heme for embryonic development. RHBP content decreases during embryogenesis, but the total heme content of eggs remains unchanged. Biliverdin, the product of heme degradation, is not detectable in late embryos. The activity of the heme-synthesizing pathway is low throughout embryogenesis and rises sharply after nymphs' hatching. Heme-radiolabeled eggs were produced and, at the day of hatching, nymphs were dissected. The presence of radiolabeled heme in their carcass is an indication that heme reutilization is occurring. The only animal known to reutilize heme in significant levels is the cattle tick Boophilus microplus, which cannot synthesize its own heme. Diversely, Rhodnius can synthesize its own heme but, in the context of embryogenesis, heme demand seems to be supplied by the programmed release of heme form RHBP. This behavior indicates that in Rhodnius, we might have a highly unusual profile: heme is both synthesized and reutilized.


Subject(s)
Carrier Proteins/metabolism , Heme/metabolism , Hemeproteins/metabolism , Rhodnius/metabolism , Animals , Female , Heme-Binding Proteins , Male , Rhodnius/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...