Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798460

ABSTRACT

T cells have emerged as sex-dependent orchestrators of pain chronification but the sexually dimorphic mechanisms by which T cells control pain sensitivity is not resolved. Here, we demonstrate an influence of regulatory T cells (Tregs) on pain processing that is distinct from their canonical functions of immune regulation and tissue repair. Specifically, meningeal Tregs (mTregs) express the endogenous opioid, enkephalin, and mTreg-derived enkephalin exerts an antinociceptive action through a presynaptic opioid receptor signaling mechanism that is dispensable for immunosuppression. mTregs are both necessary and sufficient for suppressing mechanical pain sensitivity in female but not male mice. Notably, the mTreg modulation of pain thresholds depends on sex-hormones and expansion of enkephalinergic mTregs during gestation imparts a remarkable pregnancy-induced analgesia in a pre-existing, chronic, unremitting neuropathic pain model. These results uncover a fundamental sex-specific, pregnancy-pronounced, and immunologically-derived endogenous opioid circuit for nociceptive regulation with critical implications for pain biology and maternal health.

2.
bioRxiv ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38328157

ABSTRACT

Large library docking can reveal unexpected chemotypes that complement the structures of biological targets. Seeking new agonists for the cannabinoid-1 receptor (CB1R), we docked 74 million tangible molecules, prioritizing 46 high ranking ones for de novo synthesis and testing. Nine were active by radioligand competition, a 20% hit-rate. Structure-based optimization of one of the most potent of these (Ki = 0.7 uM) led to '4042, a 1.9 nM ligand and a full CB1R agonist. A cryo-EM structure of the purified enantiomer of '4042 ('1350) in complex with CB1R-Gi1 confirmed its docked pose. The new agonist was strongly analgesic, with generally a 5-10-fold therapeutic window over sedation and catalepsy and no observable conditioned place preference. These findings suggest that new cannabinoid chemotypes may disentangle characteristic cannabinoid side-effects from their analgesia, supporting the further development of cannabinoids as pain therapeutics.

3.
J Pain ; 25(1): 53-63, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37482234

ABSTRACT

Most reports agree that aging negatively impacts pain processing and that the prevalence of chronic pain increases significantly with age. To improve current therapies, it is critical that aged animals be included in preclinical studies. Here we compared sensitivities to pain and itch-provoking stimuli in naïve and injured young and aged mice. Surprisingly, we found that in the absence of injury, aged male and female mice are significantly less responsive to mechanical stimuli and, in females, also to noxious thermal (heat) stimuli. In both older male and female mice, compared to younger (6-month-old mice), we also recorded reduced pruritogen-evoked scratching. On the other hand, after nerve injury, aged mice nevertheless developed significant mechanical hypersensitivity. Interestingly, however, and in contrast to young mice, aged mice developed both ipsilateral and contralateral postinjury mechanical allodynia. In a parallel immunohistochemical analysis of microglial and astrocyte markers, we found that the ipsilateral to the contralateral ratio of nerve injury-induced expression decreased with age. That observation is consistent with our finding of contralateral hypersensitivity after nerve injury in the aged but not the young mice. We conclude that aging has opposite effects on baseline versus postinjury pain and itch processing. PERSPECTIVE: Aged male and female mice (22-24 months) are less sensitive to mechanical, thermal (heat), and itch-provoking stimuli than are younger mice (6 months).


Subject(s)
Pain , Pruritus , Male , Female , Mice , Animals , Hyperalgesia/etiology
4.
Nat Commun ; 14(1): 8067, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38057319

ABSTRACT

The lipid prostaglandin E2 (PGE2) mediates inflammatory pain by activating G protein-coupled receptors, including the prostaglandin E2 receptor 4 (EP4R). Nonsteroidal anti-inflammatory drugs (NSAIDs) reduce nociception by inhibiting prostaglandin synthesis, however, the disruption of upstream prostanoid biosynthesis can lead to pleiotropic effects including gastrointestinal bleeding and cardiac complications. In contrast, by acting downstream, EP4R antagonists may act specifically as anti-inflammatory agents and, to date, no selective EP4R antagonists have been approved for human use. In this work, seeking to diversify EP4R antagonist scaffolds, we computationally dock over 400 million compounds against an EP4R crystal structure and experimentally validate 71 highly ranked, de novo synthesized molecules. Further, we show how structure-based optimization of initial docking hits identifies a potent and selective antagonist with 16 nanomolar potency. Finally, we demonstrate favorable pharmacokinetics for the discovered compound as well as anti-allodynic and anti-inflammatory activity in several preclinical pain models in mice.


Subject(s)
Dinoprostone , Receptors, Prostaglandin , Humans , Mice , Animals , Phagocytosis , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Pain/drug therapy , Anti-Inflammatory Agents, Non-Steroidal/pharmacology
5.
Sci Immunol ; 8(88): eabi6887, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37831760

ABSTRACT

Despite robust literature associating IL-31 with pruritic inflammatory skin diseases, its influence on cutaneous inflammation and the interplay between inflammatory and neurosensory pathways remain unmapped. Here, we examined the consequences of disrupting Il31 and its receptor Il31ra in a mouse model of house dust mite (HDM)-induced allergic dermatitis. Il31-deficient mice displayed a deficit in HDM dermatitis-associated scratching, consistent with its well-established role as a pruritogen. In contrast, Il31 deficiency increased the number and proportion of cutaneous type 2 cytokine-producing CD4+ T cells and serum IgE in response to HDM. Furthermore, Il4ra+ monocytes and macrophages capable of fueling a feedforward type 2 inflammatory loop were selectively enriched in Il31ra-deficient HDM dermatitis skin. Thus, IL-31 is not strictly a proinflammatory cytokine but rather an immunoregulatory factor that limits the magnitude of type 2 inflammatory responses in skin. Our data support a model wherein IL-31 activation of IL31RA+ pruritoceptors triggers release of calcitonin gene-related protein (CGRP), which can mediate neurogenic inflammation, inhibit CD4+ T cell proliferation, and reduce T cell production of the type 2 cytokine IL-13. Together, these results illustrate a previously unrecognized neuroimmune pathway that constrains type 2 tissue inflammation in the setting of chronic cutaneous allergen exposure and may explain paradoxical dermatitis flares in atopic patients treated with anti-IL31RA therapy.


Subject(s)
Dermatitis, Atopic , Neurogenic Inflammation , Animals , Mice , Cytokines , Immunity , Pyroglyphidae , Skin/immunology , Interleukins/immunology , Interleukins/metabolism
6.
bioRxiv ; 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37066151

ABSTRACT

The general consensus is that increases in neuronal activity in the anterior cingulate cortex (ACC) contribute to pain's negative affect. Here, using in vivo imaging of neuronal calcium dynamics in mice, we report that nitrous oxide, a general anesthetic that reduces pain affect, paradoxically, increases ACC spontaneous activity. As expected, a noxious stimulus also increased ACC activity. However, as nitrous oxide increases baseline activity, the relative change in activity from pre-stimulus baseline was significantly less than the change in the absence of the general anesthetic. We suggest that this relative change in activity represents a neural signature of the affective pain experience. Furthermore, this signature of pain persists under general anesthesia induced by isoflurane, at concentrations in which the mouse is unresponsive. We suggest that this signature underlies the phenomenon of connected consciousness, in which use of the isolated forelimb technique revealed that pain percepts can persist in anesthetized patients.

7.
Science ; 377(6614): eabn7065, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36173843

ABSTRACT

Because nonopioid analgesics are much sought after, we computationally docked more than 301 million virtual molecules against a validated pain target, the α2A-adrenergic receptor (α2AAR), seeking new α2AAR agonists chemotypes that lack the sedation conferred by known α2AAR drugs, such as dexmedetomidine. We identified 17 ligands with potencies as low as 12 nanomolar, many with partial agonism and preferential Gi and Go signaling. Experimental structures of α2AAR complexed with two of these agonists confirmed the docking predictions and templated further optimization. Several compounds, including the initial docking hit '9087 [mean effective concentration (EC50) of 52 nanomolar] and two analogs, '7075 and PS75 (EC50 4.1 and 4.8 nanomolar), exerted on-target analgesic activity in multiple in vivo pain models without sedation. These newly discovered agonists are interesting as therapeutic leads that lack the liabilities of opioids and the sedation of dexmedetomidine.


Subject(s)
Adrenergic alpha-2 Receptor Agonists , Analgesics, Non-Narcotic , Drug Discovery , Pain Management , Pain , Adrenergic alpha-2 Receptor Agonists/chemistry , Adrenergic alpha-2 Receptor Agonists/pharmacology , Adrenergic alpha-2 Receptor Agonists/therapeutic use , Analgesics, Non-Narcotic/chemistry , Analgesics, Non-Narcotic/pharmacology , Analgesics, Non-Narcotic/therapeutic use , Animals , Dexmedetomidine/chemistry , Dexmedetomidine/pharmacology , Dexmedetomidine/therapeutic use , Drug Design , Drug Discovery/methods , Humans , Ligands , Mice , Molecular Docking Simulation/methods , Structure-Activity Relationship
8.
Elife ; 112022 08 15.
Article in English | MEDLINE | ID: mdl-35968676

ABSTRACT

TRPV1, a capsaicin- and heat-activated ion channel, is expressed by peripheral nociceptors and has been implicated in various inflammatory and neuropathic pain conditions. Although pharmacological modulation of TRPV1 has attracted therapeutic interest, many TRPV1 agonists and antagonists produce thermomodulatory side effects in animal models and human clinical trials, limiting their utility. These on-target effects may result from the perturbation of TRPV1 receptors on nociceptors, which transduce signals to central thermoregulatory circuits and release proinflammatory factors from their peripheral terminals, most notably the potent vasodilative neuropeptide, calcitonin gene-related peptide (CGRP). Alternatively, these body temperature effects may originate from the modulation of TRPV1 on vascular smooth muscle cells (vSMCs), where channel activation promotes arteriole constriction. Here, we ask which of these pathways is most responsible for the body temperature perturbations elicited by TRPV1 drugs in vivo. We address this question by selectively eliminating TRPV1 expression in sensory neurons or vSMCs and show that only the former abrogates agonist-induced hypothermia and antagonist-induced hyperthermia. Furthermore, lesioning the central projections of TRPV1-positive sensory nerve fibers also abrogates drug-mediated thermomodulation, whereas eliminating CGRP has no effect. Thus, TRPV1 drugs alter core body temperature by modulating sensory input to the central nervous system, rather than through peripheral actions on the vasculature. These findings suggest how mechanistically distinct TRPV1 antagonists may diminish inflammatory pain without affecting core body temperature.


Subject(s)
Body Temperature , Neuralgia , Animals , Calcitonin Gene-Related Peptide , Capsaicin/pharmacology , Humans , Sensory Receptor Cells , TRPV Cation Channels
9.
J Med Chem ; 65(5): 4201-4217, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35195401

ABSTRACT

The 5-HT5A receptor (5-HT5AR), for which no selective agonists and a few antagonists exist, remains the least understood serotonin receptor. A single commercial antagonist, SB-699551, has been widely used to investigate the 5-HT5AR function in neurological disorders, including pain, but this molecule has substantial liabilities as a chemical probe. Accordingly, we sought to develop an internally controlled probe set. Docking over 6 million molecules against a 5-HT5AR homology model identified 5 mid-µM ligands, one of which was optimized to UCSF678, a 42 nM arrestin-biased partial agonist at the 5-HT5AR with a more restricted off-target profile and decreased assay liabilities versus SB-699551. Site-directed mutagenesis supported the docked pose of UCSF678. Surprisingly, analogs of UCSF678 that lost the 5-HT5AR activity revealed that 5-HT5AR engagement is nonessential for alleviating pain, contrary to studies with less-selective ligands. UCSF678 and analogs constitute a selective probe set with which to study the function of the 5-HT5AR.


Subject(s)
Serotonin Antagonists , Serotonin , Humans , Ligands , Pain , Receptors, Serotonin , Serotonin Antagonists/pharmacology
10.
Nature ; 600(7890): 759-764, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34880501

ABSTRACT

The σ2 receptor has attracted intense interest in cancer imaging1, psychiatric disease2, neuropathic pain3-5 and other areas of biology6,7. Here we determined the crystal structure of this receptor in complex with the clinical candidate roluperidone2 and the tool compound PB288. These structures templated a large-scale docking screen of 490 million virtual molecules, of which 484 compounds were synthesized and tested. We identified 127 new chemotypes with affinities superior to 1 µM, 31 of which had affinities superior to 50 nM. The hit rate fell smoothly and monotonically with docking score. We optimized three hits for potency and selectivity, and achieved affinities that ranged from 3 to 48 nM, with up to 250-fold selectivity versus the σ1 receptor. Crystal structures of two ligands bound to the σ2 receptor confirmed the docked poses. To investigate the contribution of the σ2 receptor in pain, two potent σ2-selective ligands and one potent σ1/σ2 non-selective ligand were tested for efficacy in a mouse model of neuropathic pain. All three ligands showed time-dependent decreases in mechanical hypersensitivity in the spared nerve injury model9, suggesting that the σ2 receptor has a role in nociception. This study illustrates the opportunities for rapid discovery of in vivo probes through structure-based screens of ultra large libraries, enabling study of underexplored areas of biology.


Subject(s)
Neuralgia , Receptors, sigma , Animals , Ligands , Mice , Neuralgia/drug therapy , Receptors, sigma/metabolism , Structure-Activity Relationship
11.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Article in English | MEDLINE | ID: mdl-34234018

ABSTRACT

A remarkable molecular and functional heterogeneity of the primary sensory neurons and dorsal horn interneurons transmits pain- and or itch-relevant information, but the molecular signature of the projection neurons that convey the messages to the brain is unclear. Here, using retro-TRAP (translating ribosome affinity purification) and RNA sequencing, we reveal extensive molecular diversity of spino- and trigeminoparabrachial projection neurons. Among the many genes identified, we highlight distinct subsets of Cck+ -, Nptx2+ -, Nmb+ -, and Crh+ -expressing projection neurons. By combining in situ hybridization of retrogradely labeled neurons with Fos-based assays, we also demonstrate significant functional heterogeneity, including both convergence and segregation of pain- and itch-provoking inputs into molecularly diverse subsets of NK1R- and non-NK1R-expressing projection neurons.


Subject(s)
Neurons/pathology , Pain/complications , Pain/pathology , Pruritus/complications , Pruritus/pathology , Spinal Cord/pathology , Trigeminal Nerve/pathology , Animals , Chloroquine/pharmacology , Female , Gene Expression Regulation/drug effects , Male , Mice, Inbred C57BL , Neurons/drug effects , Neurons/metabolism , Pain/genetics , Physical Stimulation , Pruritus/genetics , RNA/isolation & purification , RNA/metabolism , Receptors, Neurokinin-1/metabolism , Spinal Cord Dorsal Horn/drug effects , Spinal Cord Dorsal Horn/metabolism
12.
Elife ; 102021 06 01.
Article in English | MEDLINE | ID: mdl-34061020

ABSTRACT

Primary sensory neurons are generally considered the only source of dorsal horn calcitonin gene-related peptide (CGRP), a neuropeptide critical to the transmission of pain messages. Using a tamoxifen-inducible CalcaCreER transgenic mouse, here we identified a distinct population of CGRP-expressing excitatory interneurons in lamina III of the spinal cord dorsal horn and trigeminal nucleus caudalis. These interneurons have spine-laden, dorsally directed, dendrites, and ventrally directed axons. As under resting conditions, CGRP interneurons are under tonic inhibitory control, neither innocuous nor noxious stimulation provoked significant Fos expression in these neurons. However, synchronous, electrical non-nociceptive Aß primary afferent stimulation of dorsal roots depolarized the CGRP interneurons, consistent with their receipt of a VGLUT1 innervation. On the other hand, chemogenetic activation of the neurons produced a mechanical hypersensitivity in response to von Frey stimulation, whereas their caspase-mediated ablation led to mechanical hyposensitivity. Finally, after partial peripheral nerve injury, innocuous stimulation (brush) induced significant Fos expression in the CGRP interneurons. These findings suggest that CGRP interneurons become hyperexcitable and contribute either to ascending circuits originating in deep dorsal horn or to the reflex circuits in baseline conditions, but not in the setting of nerve injury.


The ability to sense pain is critical to our survival. Normally, pain is provoked by intense heat or cold temperatures, strong force or a chemical stimulus, for example, capsaicin, the pain-provoking substance in chili peppers. However, if nerve fibers in the arms or legs are damaged, pain can occur in response to touch or pressure stimuli that are normally painless. This hypersensitivity is called mechanical allodynia. A protein called calcitonin gene-related peptide, or CGRP, has been implicated in mechanical allodynia and other chronic pain conditions, such as migraine. CGRP is found in, and released from, the neurons that receive and transmit pain messages from tissues, such as skin and muscles, to the spinal cord. However, only a few distinct groups of CGRP-expressing neurons have been identified and it is unclear if these nerve cells also contribute to mechanical allodynia. To investigate this, Löken et al. genetically engineered mice so that all nerve cells containing CGRP produced red fluorescent light when illuminated with a laser. This included a previously unexplored group of CGRP-expressing neurons found in a part of the spinal cord that is known to receive information about non-painful stimuli. Using neuroanatomical methods, Löken et al. monitored the activity of these neurons in response to various stimuli, before and after a partial nerve injury. This partial injury was induced via a surgery that cut off a few, but not all, branches of a key leg nerve. The experiments showed that in their normal state, the CGRP-expressing neurons hardly responded to mechanical stimulation. In fact, it was difficult to establish what they normally respond to. However, after a nerve injury, brushing the mice's skin evoked significant activity in these cells. Moreover, when these CGRP cells were artificially stimulated, the stimulation induced hypersensitivity to mechanical stimuli, even when the mice had no nerve damage. These results suggest that this group of neurons, which are normally suppressed, can become hyperexcitable and contribute to the development of mechanical allodynia. In summary, Löken et al. have identified a group of nerve cells in the spinal cord that process mechanical information and contribute to touch-evoked pain. Future studies will identify the nerve circuits that are targeted by CGRP released from these nerve cells. These circuits represent a new therapeutic target for managing chronic pain conditions related to nerve damage, specifically mechanical allodynia, which is the most common complaint of patients with chronic pain.


Subject(s)
Calcitonin Gene-Related Peptide/metabolism , Hyperalgesia/metabolism , Interneurons/metabolism , Mechanotransduction, Cellular , Pain Threshold , Posterior Horn Cells/metabolism , Animals , Behavior, Animal , Calcitonin Gene-Related Peptide/genetics , Disease Models, Animal , Hyperalgesia/genetics , Hyperalgesia/physiopathology , Mice, Inbred C57BL , Mice, Transgenic , Neural Inhibition , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/metabolism , Peripheral Nerve Injuries/physiopathology , Physical Stimulation , Proto-Oncogene Proteins c-fos/metabolism , Vesicular Glutamate Transport Protein 1/metabolism
13.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Article in English | MEDLINE | ID: mdl-33972431

ABSTRACT

Febrile seizures (FSs) are the most common convulsion in infancy and childhood. Considering the limitations of current treatments, it is important to examine the mechanistic cause of FSs. Prompted by a genome-wide association study identifying TMEM16C (also known as ANO3) as a risk factor of FSs, we showed previously that loss of TMEM16C function causes hippocampal neuronal hyperexcitability [Feenstra et al., Nat. Genet. 46, 1274-1282 (2014)]. Our previous study further revealed a reduction in the number of warm-sensitive neurons that increase their action potential firing rate with rising temperature of the brain region harboring these hypothalamic neurons. Whereas central neuronal hyperexcitability has been implicated in FSs, it is unclear whether the maximal temperature reached during fever or the rate of body temperature rise affects FSs. Here we report that mutant rodent pups with TMEM16C eliminated from all or a subset of their central neurons serve as FS models with deficient thermoregulation. Tmem16c knockout (KO) rat pups at postnatal day 10 (P10) are more susceptible to hyperthermia-induced seizures. Moreover, they display a more rapid rise of body temperature upon heat exposure. In addition, conditional knockout (cKO) mouse pups (P11) with TMEM16C deletion from the brain display greater susceptibility of hyperthermia-induced seizures as well as deficiency in thermoregulation. We also found similar phenotypes in P11 cKO mouse pups with TMEM16C deletion from Ptgds-expressing cells, including temperature-sensitive neurons in the preoptic area (POA) of the anterior hypothalamus, the brain region that controls body temperature. These findings suggest that homeostatic thermoregulation plays an important role in FSs.


Subject(s)
Body Temperature Regulation/genetics , Chloride Channels/genetics , Fever/genetics , Hyperthermia/genetics , Preoptic Area/metabolism , Seizures, Febrile/genetics , Action Potentials/physiology , Animals , Animals, Newborn , Body Temperature/drug effects , Body Temperature/physiology , Chloride Channels/deficiency , Female , Fever/chemically induced , Fever/metabolism , Fever/physiopathology , Gene Expression , Hippocampus/metabolism , Hippocampus/physiopathology , Hyperthermia/metabolism , Hyperthermia/physiopathology , Kainic Acid/administration & dosage , Male , Mice , Mice, Knockout , Neurons/metabolism , Neurons/pathology , Preoptic Area/physiopathology , Protein Isoforms/deficiency , Protein Isoforms/genetics , Rats , Seizures, Febrile/chemically induced , Seizures, Febrile/metabolism , Seizures, Febrile/physiopathology
14.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Article in English | MEDLINE | ID: mdl-33602818

ABSTRACT

Pruritus is a common symptom of inflammatory skin conditions, including atopic dermatitis (AD). Although primary sensory neurons that transmit pruritic signals are well-cataloged, little is known about the neuronal alterations that occur as a result of skin disruption in AD. To address this question, we examined the molecular and behavioral consequences of challenging Grhl3PAR2/+ mice, which overexpress PAR2 in suprabasal keratinocytes, with serial topical application of the environmental allergen house dust mite (HDM). We monitored behavior and used RNA sequencing, qPCR, and in situ hybridization to evaluate gene expression in trigeminal ganglia (TG), before and after HDM. We found that neither Grhl3PAR2/+ nor wild-type (WT) mice exhibited spontaneous scratching, and pruritogen-induced acute scratching did not differ. In contrast, HDM exacerbated scratching in Grhl3PAR2/+ mice. Despite the absence of scratching in untreated Grhl3PAR2/+ mice, several TG genes in these mice were up-regulated compared to WT. HDM treatment of the Grhl3PAR2/+ mice enhanced up-regulation of this set of genes and induced additional genes, many within the subset of TG neurons that express TRPV1. The same set of genes was up-regulated in HDM-treated Grhl3PAR2/+ mice that did not scratch, but at lesser magnitude. Finally, we recorded comparable transcriptional changes in IL31Tg mice, demonstrating that a common genetic program is induced in two AD models. Taken together, we conclude that transcriptional changes that occur in primary sensory neurons in dermatitis-susceptible animals underlie a genetic priming that not only sensitizes the animal to chronic allergens but also contributes to pruritus in atopic skin disease.


Subject(s)
Allergens/toxicity , DNA-Binding Proteins/physiology , Dermatitis, Atopic/pathology , Receptor, PAR-2/metabolism , Sensory Receptor Cells/pathology , Skin/pathology , Transcription Factors/physiology , Animals , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/metabolism , Disease Models, Animal , Mice , Mice, Transgenic , RNA-Seq , Receptor, PAR-2/genetics , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/metabolism , Skin/drug effects , Skin/innervation , Skin/metabolism
15.
PLoS One ; 15(2): e0226289, 2020.
Article in English | MEDLINE | ID: mdl-32015563

ABSTRACT

Calcium binding proteins are expressed throughout the central and peripheral nervous system and disruption of their activity has major consequences in a wide array of cellular processes, including transmission of nociceptive signals that are processed at the level of the spinal cord. We previously reported that the calcium binding protein, hippocalcin-like 4 (Hpcal4), is heavily expressed in interneurons of the superficial dorsal horn, and that its expression is significantly downregulated in a TR4 mutant mouse model that exhibits major pain and itch deficits due to loss of a subpopulation of excitatory interneurons. That finding suggested that Hpcal4 may be a contributor to the behavioral phenotype of the TR4 mutant mouse. To address this question, here we investigated the behavioral consequences of global deletion of Hpcal4 in a battery of acute and persistent pain and itch tests. Unexpectedly, with the exception of a mild reduction in acute baseline thermal responses, Hpcal4-deficient mice exhibit no major deficits in pain or itch responses, under normal conditions or in the setting of tissue or nerve injury. Taken together, our results indicate that the neural calcium sensor Hpcal4 likely makes a limited contribution to pain and itch processing.


Subject(s)
Neurocalcin/metabolism , Pain/metabolism , Pruritus/metabolism , Animals , Behavior Rating Scale , Behavior, Animal , Chloroquine/administration & dosage , Chloroquine/pharmacology , Gene Knockout Techniques , Histamine/administration & dosage , Histamine/pharmacology , Hot Temperature , Interneurons/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurocalcin/genetics , Pruritus/chemically induced , Sciatic Nerve/injuries , Spinal Cord Dorsal Horn/metabolism
16.
Nat Commun ; 11(1): 264, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31937758

ABSTRACT

Paralleling the activation of dorsal horn microglia after peripheral nerve injury is a significant expansion and proliferation of macrophages around injured sensory neurons in dorsal root ganglia (DRG). Here we demonstrate a critical contribution of DRG macrophages, but not those at the nerve injury site, to both the initiation and maintenance of the mechanical hypersensitivity that characterizes the neuropathic pain phenotype. In contrast to the reported sexual dimorphism in the microglial contribution to neuropathic pain, depletion of DRG macrophages reduces nerve injury-induced mechanical hypersensitivity and expansion of DRG macrophages in both male and female mice. However, fewer macrophages are induced in the female mice and deletion of colony-stimulating factor 1 from sensory neurons, which prevents nerve injury-induced microglial activation and proliferation, only reduces macrophage expansion in male mice. Finally, we demonstrate molecular cross-talk between axotomized sensory neurons and macrophages, revealing potential peripheral DRG targets for neuropathic pain management.


Subject(s)
Ganglia, Spinal/immunology , Macrophages/physiology , Neuralgia/immunology , Animals , Cell Communication , Cell Proliferation/drug effects , Female , Hyperalgesia/immunology , Immunosuppressive Agents/pharmacology , Macrophage Colony-Stimulating Factor/genetics , Macrophage Colony-Stimulating Factor/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Microglia/metabolism , Microglia/physiology , Peripheral Nerve Injuries/immunology , Pregnancy , Sensory Receptor Cells/metabolism , Sex Factors , Tacrolimus/analogs & derivatives , Tacrolimus/pharmacology
17.
Brain ; 142(9): 2655-2669, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31321411

ABSTRACT

Dysfunction of inhibitory circuits in the rostral anterior cingulate cortex underlies the affective (aversive), but not the sensory-discriminative features (hypersensitivity) of the pain experience. To restore inhibitory controls, we transplanted inhibitory interneuron progenitor cells into the rostral anterior cingulate cortex in a chemotherapy-induced neuropathic pain model. The transplants integrated, exerted a GABA-A mediated inhibition of host pyramidal cells and blocked gabapentin preference (i.e. relieved ongoing pain) in a conditioned place preference paradigm. Surprisingly, pain aversiveness persisted when the transplants populated both the rostral and posterior anterior cingulate cortex. We conclude that selective and long lasting inhibition of the rostral anterior cingulate cortex, in the mouse, has a profound pain relieving effect against nerve injury-induced neuropathic pain. However, the interplay between the rostral and posterior anterior cingulate cortices must be considered when examining circuits that influence ongoing pain and pain aversiveness.


Subject(s)
GABAergic Neurons/metabolism , GABAergic Neurons/transplantation , Gyrus Cinguli/metabolism , Neuralgia/metabolism , Neuralgia/therapy , Sciatic Neuropathy/therapy , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neuralgia/pathology , Receptors, GABA-B/metabolism , Sciatic Neuropathy/metabolism , Sciatic Neuropathy/pathology
18.
Neuron ; 102(5): 944-959.e3, 2019 06 05.
Article in English | MEDLINE | ID: mdl-31030955

ABSTRACT

Hyperexcitability of the anterior cingulate cortex (ACC) is thought to drive aversion associated with chronic neuropathic pain. Here, we studied the contribution of input from the mediodorsal thalamus (MD) to ACC, using sciatic nerve injury and chemotherapy-induced mouse models of neuropathic pain. Activating MD inputs elicited pain-related aversion in both models. Unexpectedly, excitatory responses of layer V ACC neurons to MD inputs were significantly weaker in pain models compared to controls. This caused the ratio between excitation and feedforward inhibition elicited by MD input to shift toward inhibition, specifically for subcortically projecting (SC) layer V neurons. Furthermore, direct inhibition of SC neurons reproduced the pain-related aversion elicited by activating MD inputs. Finally, both the ability to elicit pain-related aversion and the decrease in excitation were specific to MD inputs; activating basolateral amygdala inputs produced opposite effects. Thus, chronic pain-related aversion may reflect activity changes in specific pathways, rather than generalized ACC hyperactivity.


Subject(s)
Avoidance Learning/physiology , Basolateral Nuclear Complex/physiopathology , Chronic Pain/physiopathology , Gyrus Cinguli/physiopathology , Mediodorsal Thalamic Nucleus/physiopathology , Neuralgia/physiopathology , Animals , Antineoplastic Agents, Phytogenic/toxicity , Chronic Pain/chemically induced , Chronic Pain/etiology , Excitatory Postsynaptic Potentials , Male , Mice , Neural Pathways/physiopathology , Neuralgia/chemically induced , Neuralgia/etiology , Paclitaxel/toxicity , Patch-Clamp Techniques , Sciatic Nerve/injuries
19.
Pain Rep ; 3(4): e659, 2018.
Article in English | MEDLINE | ID: mdl-30123855

ABSTRACT

INTRODUCTION: Gabapentin regulates pain processing by direct action on primary afferent nociceptors and dorsal horn nociresponsive neurons. Through an action at supraspinal levels, gabapentin also engages descending noradrenergic inhibitory controls that indirectly regulate spinal cord pain processing. Although direct injection of gabapentin into the anterior cingulate cortex provides pain relief independent of descending inhibitory controls, it remains unclear whether that effect is representative of what occurs when gabapentin interacts at multiple brain loci, eg, after intracerebroventricular (i.c.v.) injection. METHODS: We administered gabapentin i.c.v. in a mouse model of chemotherapy (paclitaxel)-induced neuropathic pain. To distinguish spinal from supraspinally processed features of the pain experience, we examined mechanical hypersensitivity and assessed relief of pain aversiveness using an analgesia-induced conditioned place preference paradigm. RESULTS: Paclitaxel-treated mice showed a preference for a 100-µg i.c.v. gabapentin-paired chamber that was accompanied by reduced mechanical allodynia, indicative of concurrent engagement of descending controls. As expected, the same dose in uninjured mice did not induce place preference, demonstrating that gabapentin, unlike morphine, is not inherently rewarding. Furthermore, a lower dose of supraspinal gabapentin (30 µg), which did not reverse mechanical allodynia, did not induce conditioned place preference. Finally, concurrent injections of i.c.v. gabapentin (100 µg) and intrathecal yohimbine, an α2-receptor antagonist, blocked preference for the gabapentin-paired chamber. CONCLUSION: We conclude that pain relief, namely a reduction of pain aversiveness, induced by supraspinal gabapentin administered by an i.c.v. route is secondary to its activation of descending noradrenergic inhibitory controls that block transmission of the "pain" message from the spinal cord to the brain.

20.
eNeuro ; 5(6)2018.
Article in English | MEDLINE | ID: mdl-30627644

ABSTRACT

BDNF is a critical contributor to neuronal growth, development, learning, and memory. Although extensively studied in the brain, BDNF is also expressed by primary afferent sensory neurons in the peripheral nervous system. Unfortunately, anatomical and functional studies of primary afferent-derived BDNF have been limited by the availability of appropriate molecular tools. Here, we used targeted, inducible molecular approaches to characterize the expression pattern of primary afferent BDNF and the extent to which it contributes to a variety of pain and itch behaviors. Using a BDNF-LacZ reporter mouse, we found that BDNF is expressed primarily by myelinated primary afferents and has limited overlap with the major peptidergic and non-peptidergic subclasses of nociceptors and pruritoceptors. We also observed extensive neuronal, but not glial, expression in the spinal cord dorsal horn. In addition, because BDNF null mice are not viable and even Cre-mediated deletion of BDNF from sensory neurons could have developmental consequences, here we deleted BDNF selectively from sensory neurons, in the adult, using an advillin-Cre-ER line crossed to floxed BDNF mice. We found that BDNF deletion in the adult altered few itch or acute and chronic pain behaviors, beyond sexually dimorphic phenotypes in the tail immersion, histamine, and formalin tests. Based on the anatomical distribution of sensory neuron-derived BDNF and its limited contribution to pain and itch processing, we suggest that future studies of primary afferent-derived BDNF should examine behaviors evoked by activation of myelinated primary afferents.


Subject(s)
Afferent Pathways/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Gene Expression Regulation/physiology , Nerve Fibers, Myelinated/metabolism , Pain/metabolism , Pruritus/metabolism , Animals , Antineoplastic Agents, Phytogenic/toxicity , Brain-Derived Neurotrophic Factor/genetics , Calcitonin Gene-Related Peptide/metabolism , Calcium-Binding Proteins/metabolism , Disease Models, Animal , Freund's Adjuvant/toxicity , Gene Expression Regulation/drug effects , Genotype , Histamine/toxicity , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neurons/drug effects , Neurons/metabolism , Paclitaxel/toxicity , Pain/chemically induced , Pain Measurement , Pruritus/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL
...