Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Methods Clin Dev ; 19: 47-57, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-32995359

ABSTRACT

Stable suspension producer cell lines for the production of vesicular stomatitis virus envelope glycoprotein (VSVg)-pseudotyped lentiviral vectors represent an attractive alternative to current widely used production methods based on transient transfection of adherent 293T cells with multiple plasmids. We report here a method to rapidly generate such producer cell lines from 293T cells by stable transfection of a single DNA construct encoding all lentiviral vector components. The resulting suspension cell lines yield titers as high as can be achieved with transient transfection, can be readily scaled up in single-use stirred-tank bioreactors, and are genetically and functionally stable in extended cell culture. By removing the requirement for efficient transient transfection during upstream processing of lentiviral vectors and switching to an inherently scalable suspension cell culture format, we believe that this approach will result in significantly higher batch yields than are possible with current manufacturing processes and enable better patient access to medicines based on lentiviral vectors.

2.
Cancer Cell ; 30(4): 578-594, 2016 10 10.
Article in English | MEDLINE | ID: mdl-27693047

ABSTRACT

Isocitrate dehydrogenase 1 mutations drive human gliomagenesis, probably through neomorphic enzyme activity that produces D-2-hydroxyglutarate. To model this disease, we conditionally expressed Idh1R132H in the subventricular zone (SVZ) of the adult mouse brain. The mice developed hydrocephalus and grossly dilated lateral ventricles, with accumulation of 2-hydroxyglutarate and reduced α-ketoglutarate. Stem and transit amplifying/progenitor cell populations were expanded, and proliferation increased. Cells expressing SVZ markers infiltrated surrounding brain regions. SVZ cells also gave rise to proliferative subventricular nodules. DNA methylation was globally increased, while hydroxymethylation was decreased. Mutant SVZ cells overexpressed Wnt, cell-cycle and stem cell genes, and shared an expression signature with human gliomas. Idh1R132H mutation in the major adult neurogenic stem cell niche causes a phenotype resembling gliomagenesis.


Subject(s)
Brain Neoplasms/enzymology , Glioma/enzymology , Isocitrate Dehydrogenase/biosynthesis , Lateral Ventricles/enzymology , Neoplastic Stem Cells/enzymology , Stem Cell Niche , Animals , Brain Neoplasms/genetics , Brain Neoplasms/pathology , DNA Methylation , Glioma/genetics , Glioma/pathology , Isocitrate Dehydrogenase/genetics , Lateral Ventricles/pathology , Mice , Mice, Transgenic , Mutation , Neoplastic Stem Cells/pathology , Transcriptome
3.
Stem Cell Reports ; 6(5): 635-642, 2016 05 10.
Article in English | MEDLINE | ID: mdl-27150236

ABSTRACT

Numerous developmentally regulated genes in mouse embryonic stem cells (ESCs) are marked by both active (H3K4me3)- and polycomb group (PcG)-mediated repressive (H3K27me3) histone modifications. This bivalent state is thought to be important for transcriptional poising, but the mechanisms that regulate bivalent genes and the bivalent state remain incompletely understood. Examining the contribution of microRNAs (miRNAs) to the regulation of bivalent genes, we found that the miRNA biogenesis enzyme DICER was required for the binding of the PRC2 core components EZH2 and SUZ12, and for the presence of the PRC2-mediated histone modification H3K27me3 at many bivalent genes. Genes that lost bivalency were preferentially upregulated at the mRNA and protein levels. Finally, reconstituting Dicer-deficient ESCs with ESC miRNAs restored bivalent gene repression and PRC2 binding at formerly bivalent genes. Therefore, miRNAs regulate bivalent genes and the bivalent state itself.


Subject(s)
DEAD-box RNA Helicases/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , MicroRNAs/genetics , Mouse Embryonic Stem Cells/metabolism , Polycomb Repressive Complex 2/genetics , Ribonuclease III/genetics , Animals , Cell Differentiation/genetics , Gene Expression Regulation, Developmental , Histone Code/genetics , Histone-Lysine N-Methyltransferase/genetics , Mice , Promoter Regions, Genetic , Transcriptional Activation/genetics
5.
EMBO J ; 31(7): 1798-810, 2012 Apr 04.
Article in English | MEDLINE | ID: mdl-22333912

ABSTRACT

Reprogramming gene expression is crucial for DNA replication stress response. We used quantitative proteomics to establish how the transcriptional response results in changes in protein levels. We found that expression of G1/S cell-cycle targets are strongly up-regulated upon replication stress, and show that MBF, but not SBF genes, are up-regulated via Rad53-dependent inactivation of the MBF co-repressor Nrm1. A subset of G1/S genes was found to undergo an SBF-to-MBF switch at the G1/S transition, enabling replication stress-induced transcription of genes targeted by SBF during G1. This subset of G1/S genes is characterized by an overlapping Swi4/Mbp1-binding site and is enriched for genes that cause a cell cycle and/or growth defect when overexpressed. Analysis of the prototypical switch gene TOS4 (Target Of SBF 4) reveals its role as a checkpoint effector supporting the importance of this distinct class of G1/S genes for the DNA replication checkpoint response. Our results reveal that replication stress induces expression of G1/S genes via the Rad53-MBF pathway and that an SBF-to-MBF switch characterizes a new class of genes that can be induced by replication stress.


Subject(s)
DNA Replication , G1 Phase/genetics , Gene Expression Regulation, Fungal , Genes, cdc , S Phase/genetics , Saccharomyces cerevisiae/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Checkpoint Kinase 2 , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proteomics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/physiology , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factors/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...