Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; : e0199023, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37623316

ABSTRACT

While the effect of gut microbiota and/or inflammation on a distant body site, including the lungs (gut-lung axis), has been well characterized, data about the influence of lung microbiota and lung inflammation on gut homeostasis (lung-gut axis) are scarce. Using a well-characterized model of pulmonary infection with the fungus Aspergillus fumigatus, we investigated alterations in the lung and gut microbiota by next-generation sequencing of the V3-V4 regions of total bacterial DNA. Pulmonary inflammation due to the fungus A. fumigatus caused bacterial dysbiosis in both lungs and gut, but with different characteristics. While increased alpha diversity and unchanged bacterial composition were noted in the lungs, dysbiosis in the gut was characterized by decreased alpha diversity indices and modified bacterial composition. The altered homeostasis in the lungs allows the immigration of new bacterial species of which 41.8% were found in the feces, indicating that some degree of bacterial migration from the gut to the lungs occurs. On the contrary, the dysbiosis occurring in the gut during pulmonary infection was a consequence of the local activity of the immune system. In addition, the alteration of gut microbiota in response to pulmonary infection depends on the bacterial composition before infection, as no changes in gut bacterial microbiota were detected in a rat strain with diverse gut bacteria. The data presented support the existence of the lung-gut axis and provide additional insight into this mechanism. IMPORTANCE Data regarding the impact of lung inflammation and lung microbiota on GIT are scarce, and the mechanisms of this interaction are still unknown. Using a well-characterized model of pulmonary infection caused by the opportunistic fungus Aspergillus fumigatus, we observed bacterial dysbiosis in both the lungs and gut that supports the existence of the lung-gut axis.

2.
Int J Mol Sci ; 24(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36769176

ABSTRACT

Cadmium (Cd) is a highly toxic metal that is distributed worldwide. Exposure to it is correlated with a vast number of diseases and organism malfunctions. Exopolysaccharides (EPS) derived from Lactiplantibacillus plantarum BGAN8, EPS-AN8, previously showed great potential for the in vitro protection of intestinal cells from this metal. Here, we investigated the potential of food supplemented with EPS-AN8 to protect rats from the hazardous effects of Cd exposure. After thirty days of exposure to lower (5 ppm) and higher (50 ppm)-Cd doses, the administration of EPS-AN8 led to decreased Cd content in the kidneys, liver, and blood compared to only Cd-treated groups, whereas the fecal Cd content was strongly enriched. In addition, EPS-AN8 reversed Cd-provoked effects on the most significant parameters of oxidative stress (MDA, CAT, GST, and GSH) and inflammation (IL-1ß, TNF-α, and IFN-γ) in the duodenum. Moreover, micrographs of the duodenum were in line with these findings. As the gut microbiota has an important role in maintaining homeostasis, we used 16S rRNA amplicon sequencing and investigated the effects of Cd and EPS-AN8 on one part of the microbiota presented in the duodenum. Although Cd decreased the growth of lactobacilli and mostly favored the blooming of opportunistic pathogen bacteria, parallel intake of EPS-AN8 reversed those changes. Therefore, our results imply that EPS-AN8 might be extremely noteworthy in combatting this toxic environmental pollutant.


Subject(s)
Cadmium , Dietary Supplements , Rats , Animals , Cadmium/toxicity , RNA, Ribosomal, 16S/genetics , Oxidative Stress , Lactobacillus
3.
Front Microbiol ; 12: 759378, 2021.
Article in English | MEDLINE | ID: mdl-34790183

ABSTRACT

Cadmium (Cd) ranks seventh on the list of most significant potential threats to human health based on its suspected toxicity and the possibility of exposure to it. It has been reported that some bacterial exopolysaccharides (EPSs) have the ability to bind heavy metal ions. We therefore investigated the capacity of eight EPS-producing lactobacilli to adsorb Cd in the present study, and Lactiplantibacillus plantarum BGAN8 was chosen as the best candidate. In addition, we demonstrate that an EPS derived from BGAN8 (EPS-AN8) exhibits a high Cd-binding capacity and prevents Cd-mediated toxicity in intestinal epithelial Caco-2 cells. Simultaneous use of EPS-AN8 with Cd treatment prevents inflammation, disruption of tight-junction proteins, and oxidative stress. Our results indicate that the EPS in question has a strong potential to be used as a postbiotic in combatting the adverse effects of Cd. Moreover, we show that higher concentrations of EPS-AN8 can alleviate Cd-induced cell damage.

4.
Microorganisms ; 8(10)2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33076224

ABSTRACT

Yogurt is a traditional fermented dairy product, prepared with starter cultures containing Streptococcus thermophilus and Lactobacillus bulgaricus that has gained widespread consumer acceptance as a healthy food. It is widely accepted that yogurt cultures have been recognized as probiotics, due to their beneficial effects on human health. In this study, we have characterized technological and health-promoting properties of autochthonous strains S. thermophilus BGKMJ1-36 and L. bulgaricus BGVLJ1-21 isolated from artisanal sour milk and yogurt, respectively, in order to be used as functional yogurt starter cultures. Both BGKMJ1-36 and BGVLJ1-21 strains have the ability to form curd after five hours at 42 °C, hydrolyze αs1-, ß-, and κ- casein, and to show antimicrobial activity toward Listeria monocytogenes. The strain BGKMJ1-36 produces exopolysaccharides important for rheological properties of the yogurt. The colonies of BGKMJ1-36 and BGVLJ1-21 strains that successfully survived transit of the yogurt through simulated gastrointestinal tract conditions have been tested for adhesion to intestinal epithelial Caco-2 cells. The results reveal that both strains adhere to Caco-2 cells and significantly upregulate the expression of autophagy-, tight junction proteins-, and anti-microbial peptides-related genes. Hence, both strains may be interesting for use as a novel functional starter culture for production of added-value yogurt with health-promoting properties.

5.
Sci Rep ; 10(1): 1347, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31992761

ABSTRACT

The characterization of mechanisms involved in the positive effects of probiotic bacteria in various pathophysiological conditions is a prerogative for their safe and efficient application in biomedicine. We have investigated the immunological effects of live bacteria-free supernatant collected from GABA-producing Lactobacillus brevis BGZLS10-17 on Concanavalin A-stimulated mesenteric lymph node cells (MLNC), an in vitro model of activated immune cells. We have shown that GABA containing and GABA-free supernatant of Lactobacillus brevis BGZLS10-17 have strong immunoregulatory effects on MLNC. Further, GABA produced by this strain exhibit additional inhibitory effects on proliferation, IFN-γ and IL-17 production by MLNC, and the expression of MHCII and CD80 on antigen presenting cells. At the other hand, GABA-containing supernatants displayed the strongest stimulatory effects on the expression of immunoregulatory molecules, such as Foxp3+, IL-10, TGF-ß, CTLA4 and SIRP-α. By looking for the mechanisms of actions, we found that supernatants produced by BGZLS10-17 induce autophagy in different MLNC, such as CD4+ and CD8+ T lymphocytes, NK and NKT cells, as well as antigen presenting cells. Further, we showed that the stimulation of Foxp3+, IL-10 and TGF-ß expression by BGZLS10-17 produced GABA is completely mediated by the induction of ATG5 dependent autophagy, and that other molecules in the supernatants display GABA-, ATG5-, Foxp3+-, IL-10- and TGF-ß- independent, immunoregulatory effects.


Subject(s)
Autophagy-Related Protein 5/metabolism , Autophagy , Host-Pathogen Interactions/immunology , Immunomodulation , Levilactobacillus brevis/immunology , gamma-Aminobutyric Acid/metabolism , Animals , Autophagy/genetics , Autophagy-Related Protein 5/genetics , Culture Media, Conditioned , Energy Metabolism , Female , Levilactobacillus brevis/metabolism , Probiotics , Rats , Signal Transduction , gamma-Aminobutyric Acid/pharmacology
6.
Front Microbiol ; 10: 412, 2019.
Article in English | MEDLINE | ID: mdl-30891021

ABSTRACT

Listeria monocytogenes, the common foodborne pathogenic bacteria species, compromises the intestinal epithelial barrier, leading to development of the listeriosis, a severe disease especially among immunocompromised individuals. L. monocytogenes infection usually requires antibiotic treatment, however, excessive use of antibiotics promotes emergence of antibiotic resistance and the destruction of gut microbiota. Probiotics, including lactic acid bacteria (LAB), have been repeatedly proven as an alternative approach for the treatment of various infections. We have analyzed the potential of Enterococcus faecium BGPAS1-3, a dairy isolate exhibiting strong direct antilisterial effect, to modulate the response of differentiated Caco-2 intestinal epithelial cells to L. monocytogenes ATCC 19111 infection. We showed that the molecule with antilisterial effect is a bacterial cell-wall protein that is highly resistant to the high-temperature treatment. When we tested the antilisterial potential of heat-killed BGPAS1-3, we found that it could prevent tight junction disruption in differentiated Caco-2 monolayer infected with L. monocytogenes ATCC 19111, induce antilisterial host response mechanisms, and stimulate the production of protective TGF-ß in intestinal epithelial cells. We also showed that the modulation of MyD88 dependent TLR2 and TLR4 pathways by BGPAS1-3 are involved in host response against L. monocytogenes ATCC 19111. Since heat-killed BGPAS1-3 possess strong antilisterial effects, such postbiotic could be used as a controllable and safe therapeutic.

SELECTION OF CITATIONS
SEARCH DETAIL
...