Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 70(6): 2213-23, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-20197469

ABSTRACT

Inhibition of angiopoietin-2 (Ang2) can slow tumor growth, but the underlying mechanism is not fully understood. Because Ang2 is expressed in growing blood vessels and promotes angiogenesis driven by vascular endothelial growth factor (VEGF), we asked whether the antitumor effect of Ang2 inhibition results from reduced sprouting angiogenesis and whether the effect is augmented by inhibition of VEGF from tumor cells. Using Colo205 human colon carcinomas in nude mice as a model, we found that selective inhibition of Ang2 by the peptide-Fc fusion protein L1-7(N) reduced the number of vascular sprouts by 46% and tumor growth by 62% over 26 days. Strikingly, when the Ang2 inhibitor was combined with a function-blocking anti-VEGF antibody, the number of sprouts was reduced by 82%, tumor vascularity was reduced by 67%, and tumor growth slowed by 91% compared with controls. The reduction in tumor growth was accompanied by decreased cell proliferation and increased apoptosis. We conclude that inhibition of Ang2 slows tumor growth by limiting the expansion of the tumor vasculature by sprouting angiogenesis, in a manner that is complemented by concurrent inhibition of VEGF and leads to reduced proliferation and increased apoptosis of tumor cells.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Angiopoietin-2/antagonists & inhibitors , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Colonic Neoplasms/blood supply , Colonic Neoplasms/drug therapy , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Angiopoietin-2/biosynthesis , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Cell Growth Processes/drug effects , Colonic Neoplasms/pathology , Drug Synergism , Humans , Mice , Mice, Nude , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/pathology , Rats , Receptors, Fc/genetics , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , Vascular Endothelial Growth Factor A/biosynthesis , Vascular Endothelial Growth Factor A/immunology , Xenograft Model Antitumor Assays
2.
Am J Pathol ; 175(5): 2159-70, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19815705

ABSTRACT

Angiopoietin-1 (Ang1) and angiopoietin-2 (Ang2) have complex actions in angiogenesis and vascular remodeling due to their effects on Tie2 receptor signaling. Ang2 blocks Ang1-mediated activation of Tie2 in endothelial cells under certain conditions but is a Tie2 receptor agonist in others. We examined the effects of selective inhibitors of Ang1 (mL4-3) or Ang2 (L1-7[N]), alone or in combination, on the vasculature of human Colo205 tumors in mice. The Ang2 inhibitor decreased the overall abundance of tumor blood vessels by reducing tumor growth and keeping vascular density constant. After inhibition of Ang2, tumor vessels had many features of normal blood vessels (normalization), as evidenced by junctional accumulation of vascular endothelial-cadherin, junctional adhesion molecule-A, and platelet/endothelial cell adhesion molecule-1 in endothelial cells, increased pericyte coverage, reduced endothelial sprouting, and remodeling into smaller, more uniform vessels. The Ang1 inhibitor by itself had little noticeable effect on the tumor vasculature. However, when administered with the Ang2 inhibitor, the Ang1 inhibitor prevented tumor vessel normalization, but not the reduction in tumor vascularity produced by the Ang2 inhibitor. These findings are consistent with a model whereby inhibition of Ang2 leads to normalization of tumor blood vessels by permitting the unopposed action of Ang1, but decreases tumor vascularity primarily by blocking Ang2 actions.


Subject(s)
Angiopoietin-1/antagonists & inhibitors , Angiopoietin-2/antagonists & inhibitors , Blood Vessels/anatomy & histology , Blood Vessels/metabolism , Neoplasms/blood supply , Neoplasms/pathology , Neovascularization, Pathologic/metabolism , Angiopoietin-1/metabolism , Angiopoietin-2/metabolism , Animals , Blood Vessels/pathology , Endothelial Cells/cytology , Endothelial Cells/metabolism , Endothelium, Vascular/cytology , Humans , Mice , Mice, Nude , Neoplasm Transplantation , Neoplasms/metabolism , Pericytes/cytology , Pericytes/metabolism , Phenotype , Signal Transduction/physiology
3.
J Med Chem ; 51(6): 1695-705, 2008 Mar 27.
Article in English | MEDLINE | ID: mdl-18311900

ABSTRACT

Angiogenesis is vital for solid tumor growth, and its prevention is a proven strategy for the treatment of disease states such as cancer. The vascular endothelial growth factor (VEGF) pathway provides several opportunities by which small molecules can act as inhibitors of endothelial proliferation and migration. Critical to these processes is signaling through VEGFR-2 or the kinase insert domain receptor (KDR) upon stimulation by its ligand VEGF. Herein, we report the discovery of 2,3-dihydro-1,4-benzoxazines as inhibitors of intrinsic KDR activity (IC 50 < 0.1 microM) and human umbilical vein endothelial cell (HUVEC) proliferation with IC 50 < 0.1 microM. More specifically, compound 16 was identified as a potent (KDR: < 1 nM and HUVEC: 4 nM) and selective inhibitor that exhibited efficacy in angiogenic in vivo models. In addition, this series of molecules is typically well-absorbed orally, further demonstrating the 2,3-dihydro-1,4-benzoxazine moiety as a promising platform for generating kinase-based antiangiogenic therapeutic agents.


Subject(s)
Angiogenesis Inhibitors/administration & dosage , Benzoxazines/administration & dosage , Neoplasms/blood supply , Neovascularization, Pathologic/prevention & control , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Administration, Oral , Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/chemistry , Animals , Benzoxazines/chemical synthesis , Benzoxazines/chemistry , Biological Availability , Cell Line , Cell Proliferation/drug effects , Corneal Neovascularization/blood , Crystallography, X-Ray , Dose-Response Relationship, Drug , Endothelial Cells/drug effects , Female , Humans , Injections, Subcutaneous , Ligands , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Models, Animal , Models, Molecular , Molecular Structure , Rats , Rats, Sprague-Dawley , Stereoisomerism , Structure-Activity Relationship , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...