Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 30(43): e1802649, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30277617

ABSTRACT

Tissue engineering has offered unique opportunities for disease modeling and regenerative medicine; however, the success of these strategies is dependent on faithful reproduction of native cellular organization. Here, it is reported that ultrasound standing waves can be used to organize myoblast populations in material systems for the engineering of aligned muscle tissue constructs. Patterned muscle engineered using type I collagen hydrogels exhibits significant anisotropy in tensile strength, and under mechanical constraint, produced microscale alignment on a cell and fiber level. Moreover, acoustic patterning of myoblasts in gelatin methacryloyl hydrogels significantly enhances myofibrillogenesis and promotes the formation of muscle fibers containing aligned bundles of myotubes, with a width of 120-150 µm and a spacing of 180-220 µm. The ability to remotely pattern fibers of aligned myotubes without any material cues or complex fabrication procedures represents a significant advance in the field of muscle tissue engineering. In general, these results are the first instance of engineered cell fibers formed from the differentiation of acoustically patterned cells. It is anticipated that this versatile methodology can be applied to many complex tissue morphologies, with broader relevance for spatially organized cell cultures, organoid development, and bioelectronics.


Subject(s)
Muscle Fibers, Skeletal/cytology , Myoblasts/cytology , Tissue Engineering/methods , Tissue Scaffolds , Ultrasonic Waves , Acoustics/instrumentation , Animals , Cell Line , Collagen , Hydrogels , Mice , Tissue Engineering/instrumentation
2.
Soft Matter ; 14(5): 681-692, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-29205244

ABSTRACT

We present a microfluidic platform for magnetic manipulation of water droplets immersed in bulk oil-based ferrofluid. Although non-magnetic, the droplets are exclusively controlled by magnetic fields without any pressure-driven flow. The fluids are dispensed in a sub-millimeter Hele-Shaw chamber that includes permalloy tracks on its substrate. An in-plane rotating magnetic field magnetizes the permalloy tracks, producing local magnetic gradients, while an orthogonal magnetic field magnetizes the bulk ferrofluid. To minimize the magnetostatic energy of the system, the water droplets are attracted towards the locations on the tracks where the bulk ferrofluid is repelled. Using this technique, we demonstrate synchronous generation and propagation of water droplets, study the kinematics of propagation, and analyze the flow of the bulk ferrofluid. In addition, we show controlled break-up of droplets and droplet-to-droplet interactions. Finally, we discuss future applications owing to the potential biocompatibility of the droplets.

3.
Adv Healthc Mater ; 5(23): 3046-3055, 2016 12.
Article in English | MEDLINE | ID: mdl-27782370

ABSTRACT

The development of synthetic vascular grafts for coronary artery bypass is challenged by insufficient endothelialization, which increases the risk of thrombosis, and the lack of native cellular constituents, which favors pathological remodeling. Here, a bifunctional electrospun poly(ε-caprolactone) (PCL) scaffold with potential for synthetic vascular graft applications is presented. This scaffold incorporates two tethered peptides: the osteopontin-derived peptide (Adh) on the "luminal" side and a heparin-binding peptide (Hep) on the "abluminal" side. Additionally, the "abluminal" side of the scaffold is seeded with saphenous vein-derived pericytes (SVPs) as a source of proangiogenic growth factors. The Adh peptide significantly increases endothelial cell adhesion, while the Hep peptide promotes accumulation of vascular endothelial growth factor secreted by SVPs. SVPs increase endothelial migration both in a transwell assay and a modified scratch assay performed on the PCL scaffold. Seeding of SVPs on the "abluminal"/Hep side of the scaffold further increases endothelial cell density, indicating a combinatory effect of the peptides and pericytes. Finally, SVP-seeded scaffolds are preserved by freezing in a xeno-free medium, maintaining good cell viability and function. In conclusion, this engineered scaffold combines patient-derived pericytes and spatially organized functionalities, which synergistically increase endothelial cell density and growth factor retention.


Subject(s)
Endothelial Cells/drug effects , Peptides/administration & dosage , Pericytes/drug effects , Tissue Scaffolds/chemistry , Blood Vessel Prosthesis , Cell Adhesion/drug effects , Cell Movement/drug effects , Cell Survival/drug effects , Cells, Cultured , Coronary Vessels/drug effects , Coronary Vessels/metabolism , Endothelial Cells/metabolism , Heparin/metabolism , Humans , Osteopontin/metabolism , Peptides/chemistry , Pericytes/metabolism , Polyesters/administration & dosage , Polyesters/chemistry , Tissue Engineering/methods , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...