Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1372049, 2024.
Article in English | MEDLINE | ID: mdl-38495373

ABSTRACT

Introduction: Induced modification of plant gene expression is of both fundamental and applied importance. Cis-acting regulatory elements (CREs) are major determinants of the spatiotemporal strength of gene expression. Yet, there are few examples where induced genetic variation in predetermined CREs has been exploited to improve or investigate crop plants. Methods: The digital PCR based FIND-IT technology was applied to discover barley mutants with CRE variants in the promoter of the nutritional important barley grain phytase (PAPhy_a) gene. Results and discussion: Mutants with higher or lower gene expression and ultimately higher or lower mature grain phytase activity (MGPA), respectively, were discovered. Field trials and inositol phosphate profiling during germination showed that PAPhy_a does not influence agronomic performance under the trial conditions but it does shorten the lag time of phosphate mobilization during germination. Higher endogenous MGPA is an improvement of grain quality for feed use as it improves the phosphate bioavailability for monogastric animals. Moreover, as the targeted CRE motifs of the PAPhy_a promoter are shared with a range of seed expressed genes like key cereal and legume storage genes, the current results demonstrates a concept for modulating individual gene expression levels of a range of seed genes.

2.
Anal Biochem ; 578: 7-12, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31054994

ABSTRACT

Phytases are involved in the phosphate acquisition and remobilization in plants, microbes and animals. They have become important technical enzymes in the feed industry and are used to make phosphate, present in animal feed as phytate, available for monogastric animal nutrition. Phytases may also be beneficial to human nutrition because phytate is known to interfere with the uptake of important micronutrients. Accordingly, phytases attract considerable research attention and phytate substrate lacking contaminants that interfere with commonly used phosphate-release assays is essential for this field of science. A procedure to prepare suitable sodium phytate from rice bran is presented. Extracted phytate is precipitated with barium hydroxide and re-dissolved in methanol after washing steps and sulphuric acid treatment. Remaining impurities are precipitated before the dissolved phytate is recovered as the sodium salt by addition of sodium hydroxide. In order to make the substrate widely available for research communities, the procedure relies solely on basic laboratory equipment and materials. Methods for quality control and monitoring of the purified sodium phytate or commercial alternatives are also presented.


Subject(s)
Oryza/metabolism , Phytic Acid , Dietary Fiber , Hydrolysis , Phytic Acid/chemistry , Phytic Acid/isolation & purification , Quality Control
3.
Proc Natl Acad Sci U S A ; 107(21): 9608-13, 2010 May 25.
Article in English | MEDLINE | ID: mdl-20453199

ABSTRACT

Inositol phosphates (InsPs) are signaling molecules with multiple roles in cells. In particular (InsP(6)) is involved in mRNA export and editing or chromatin remodeling among other events. InsP(6) accumulates as mixed salts (phytate) in storage tissues of plants and plays a key role in their physiology. Human diets that are exclusively grain-based provide an excess of InsP(6) that, through chelation of metal ions, may have a detrimental effect on human health. Ins(1,3,4,5,6)P(5) 2-kinase (InsP(5) 2-kinase or Ipk1) catalyses the synthesis of InsP(6) from InsP(5) and ATP, and is the only enzyme that transfers a phosphate group to the axial 2-OH of the myo-inositide. We present the first structure for an InsP(5) 2-kinase in complex with both substrates and products. This enzyme presents a singular structural region for inositide binding that encompasses almost half of the protein. The key residues in substrate binding are identified, with Asp368 being responsible for recognition of the axial 2-OH. This study sheds light on the unique molecular mechanism for the synthesis of the precursor of inositol pyrophosphates.


Subject(s)
Arabidopsis/enzymology , Inositol Phosphates/chemistry , Inositol Phosphates/metabolism , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Water/chemistry , Amino Acid Sequence , Animals , Binding Sites , Humans , Ligands , Models, Molecular , Molecular Sequence Data , Mutation , Phosphotransferases (Alcohol Group Acceptor)/genetics , Protein Structure, Tertiary , Sequence Alignment , Substrate Specificity
4.
Article in English | MEDLINE | ID: mdl-20057083

ABSTRACT

Inositol 1,3,4,5,6-pentakisphosphate kinase (IP(5) 2-K) is an enzyme involved in inositol metabolism that synthesizes IP(6) (inositol 1,2,3,4,5,6-hexakisphosphate) from inositol 1,3,4,5,6-pentakisphosphate (IP(5)) and ATP. IP(6) is the major phosphorus reserve in plants, while in mammals it is involved in multiple cellular events such as DNA editing and chromatin remodelling. In addition, IP(6) is the precursor of other highly phosphorylated inositols which also play highly relevant roles. IP(5) 2-K is the only enzyme that phosphorylates the 2-OH axial position of the inositide and understanding its molecular mechanism of substrate specificity is of great interest in cell biology. IP(5) 2-K from Arabidopsis thaliana has been expressed in Escherichia coli as two different fusion proteins and purified. Both protein preparations yielded crystals of different quality, always in the presence of IP(6). The best crystals obtained for X-ray crystallographic analysis belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 58.124, b = 113.591, c = 142.478 A. Several diffraction data sets were collected for the native enzyme and two heavy-atom derivatives using a synchrotron source.


Subject(s)
Phosphotransferases (Alcohol Group Acceptor)/chemistry , Arabidopsis/enzymology , Arabidopsis Proteins/chemistry , Crystallization , Crystallography, X-Ray
SELECTION OF CITATIONS
SEARCH DETAIL
...