Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 14(6): e11538, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38859887

ABSTRACT

Understanding the factors that drive spatial synchrony among populations or species is important for management and recovery of populations. The range-wide declines in Atlantic salmon (Salmo salar) populations may be the result of broad-scale changes in the marine environment. Salmon undergo rapid growth in the ocean; therefore changing marine conditions may affect body size and fecundity estimates used to evaluate whether stock reference points are met. Using a dataset that spanned five decades, 172,268 individuals, and 19 rivers throughout Eastern Canada, we investigated the occurrence of spatial synchrony in changes in the body size of returning wild adult Atlantic salmon. Body size was then related to conditions in the marine environment (i.e., climate indices, thermal habitat availability, food availability, density-dependence, and fisheries exploitation rates) that may act on all populations during the ocean feeding phase of their life cycle. Body size increased during the 1980s and 1990s for salmon that returned to rivers after one (1SW) or two winters at sea (2SW); however, significant changes were only observed for 1SW and/or 2SW in some mid-latitude and northern rivers (10/13 rivers with 10 of more years of data during these decades) and not in southern rivers (0/2), suggesting weak spatial synchrony across Eastern Canada. For 1SW salmon in nine rivers, body size was longer when fisheries exploitation rates were lower. For 2SW salmon, body size was longer when suitable thermal habitat was more abundant (significant for 3/8 rivers) and the Atlantic Multidecadal Oscillation was higher (i.e., warmer sea surface temperatures; significant for 4/8 rivers). Overall, the weak spatial synchrony and variable effects of covariates on body size across rivers suggest that changes in Atlantic salmon body size may not be solely driven by shared conditions in the marine environment. Regardless, body size changes may have consequences for population management and recovery through the relationship between size and fecundity.

2.
Ecol Evol ; 14(4): e11068, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38584771

ABSTRACT

Complex traits often exhibit complex underlying genetic architectures resulting from a combination of evolution from standing variation, hard and soft sweeps, and alleles of varying effect size. Increasingly, studies implicate both large-effect loci and polygenic patterns underpinning adaptation, but the extent that common genetic architectures are utilized during repeated adaptation is not well understood. Sea age or age at maturation represents a significant life history trait in Atlantic Salmon (Salmo salar), the genetic basis of which has been studied extensively in European Atlantic populations, with repeated identification of large-effect loci. However, the genetic basis of sea age within North American Atlantic Salmon populations remains unclear, as does the potential for a parallel trans-Atlantic genomic basis to sea age. Here, we used a large single-nucleotide polymorphism (SNP) array and low-coverage whole-genome resequencing to explore the genomic basis of sea age variation in North American Atlantic Salmon. We found significant associations at the gene and SNP level with a large-effect locus (vgll3) previously identified in European populations, indicating genetic parallelism, but found that this pattern varied based on both sex and geographic region. We also identified nonrepeated sets of highly predictive loci associated with sea age among populations and sexes within North America, indicating polygenicity and low rates of genomic parallelism. Despite low genome-wide parallelism, we uncovered a set of conserved molecular pathways associated with sea age that were consistently enriched among comparisons, including calcium signaling, MapK signaling, focal adhesion, and phosphatidylinositol signaling. Together, our results indicate parallelism of the molecular basis of sea age in North American Atlantic Salmon across large-effect genes and molecular pathways despite population-specific patterns of polygenicity. These findings reveal roles for both contingency and repeated adaptation at the molecular level in the evolution of life history variation.

3.
J Anim Ecol ; 80(4): 844-53, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21401593

ABSTRACT

1. Temperature governs most physiological processes in animals. Ectotherms behaviourally thermoregulate by selecting habitats with temperatures regulating their body temperature for optimal physiological functioning. However, ectotherms can experience temperature extremes forcing the organisms to seek temperature refuge. 2. Fish actively avoid potentially lethal temperatures by moving to cool-water sites created by inflowing tributaries and groundwater seeps. Juvenile Atlantic salmon (Salmo salar) of different age classes exhibit different behavioural responses to elevated temperatures (>23 °C). Yearling (1+) and 2-year-old (2+) Atlantic salmon often cease feeding, abandon territorial behaviour and swim continuously in aggregations in cool-water sites; whereas young-of-the-year (0+) fish continue defending territories and foraging. 3. This study determined whether the behavioural shift in older individuals (2+) occurred when basal metabolic rate, driven by increasing water temperature, reached the maximum metabolic rate such that anaerobic pathways were recruited to provide energy to support vital processes. Behaviour (feeding and stress responses), oxygen consumption, muscle lactate and glycogen, and circulating blood lactate and glucose concentrations were measured in wild 0+ and 2+ Atlantic salmon acclimated to water temperatures between 16 and 28 °C. 4. Results indicate that oxygen consumption of the 2+ fish increased with temperature and reached a plateau at 24 °C, a temperature that corresponded to cessation of feeding and a significant increase in muscle and blood lactate levels. By contrast, oxygen consumption in 0+ fish did not reach a plateau, feeding continued and muscle lactate did not increase, even at the highest temperatures tested (28 °C). 5. To conclude, the experiment demonstrated that the 0+ and 2+ fish had different physiological responses to the elevated water temperatures. The results suggest that wild 2+ Atlantic salmon employ behavioural responses (e.g. movement to cool-water sites) at elevated temperatures in an effort to mitigate physiological imbalances associated with an inability to support basal metabolism through aerobic metabolic processes.


Subject(s)
Feeding Behavior , Salmo salar/physiology , Stress, Physiological , Swimming , Age Distribution , Animals , Basal Metabolism , Blood Glucose/analysis , Glycogen/analysis , Lactic Acid/analysis , Lactic Acid/blood , New Brunswick , Oxygen Consumption , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...