Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Biol ; 204(Pt 24): 4353-60, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11815659

ABSTRACT

Two previous studies of the effects of anoxia on protein synthesis in anoxia-tolerant turtles (Trachemys scripta elegans, Chrysemys picta bellii) have generated opposing results. Using the flooding-dose method, we measured the rate of protein synthesis following injection and incorporation of a large dose of radiolabelled phenylalanine to resolve the question of whether anoxia results in a downregulation of protein synthesis. After 1 h of anoxia, levels of protein-incorporated radiolabel indicated that protein synthesis rates in the intestine, heart, liver, brain, muscle and lungs were not significantly different from those of normoxic controls. However, from 1 to 6 h of anoxia, quantities of protein-incorporated radiolabel did not increase, suggesting that protein synthesis had ceased or had decreased below a measurable level. There was also no significant post-anoxia increase in protein synthesis rates above normoxic control levels during 3 h of recovery from anoxia. RNA-to-protein ratios did not change significantly in any tissue except the heart, in which RNA levels decreased below normoxic control levels after 6 h of anoxia. Except in the heart, downregulation of protein synthesis during anoxia does not appear to be mediated by changes in tissue RNA concentration.


Subject(s)
Oxygen/administration & dosage , Protein Biosynthesis , Turtles/metabolism , Animals , Brain/metabolism , Intestinal Mucosa/metabolism , Kinetics , Liver/metabolism , Lung/metabolism , Muscles/metabolism , Myocardium/metabolism , Phenylalanine/administration & dosage , RNA/analysis , Tritium
2.
Am J Physiol ; 271(4 Pt 2): R897-904, 1996 Oct.
Article in English | MEDLINE | ID: mdl-8897979

ABSTRACT

Mechanisms of anoxia tolerance were investigated in crucian carp. Rates of protein synthesis were calculated in selected tissues of normoxic and anoxic animals. Exposure to 48 h of anoxia resulted in a significant reduction in protein synthesis in the liver (> 95%), heart (53%), and red and white muscle (52 and 56%, respectively), whereas brain protein synthesis rates were unaffected. Seven days of anoxia produced similar results. After 24 h of recovery from a 48-h anoxic period, protein synthesis rates had virtually returned to normoxic values. The effect of anoxia on the amount of RNA (relative to protein) varied depending on the tissue and also the length of exposure (except in the brain, where it was consistently reduced). However, the effect on RNA translational efficiency was purely tissue specific (i.e., independent of exposure time) and was unaffected in the heart, reduced in the liver and red and white muscle, and increased in the brain. Downregulation of protein synthesis on a tissue-specific basis appears to be a significant mechanism for energy conservation as well as maintaining neural function, thus promoting survival during anoxia.


Subject(s)
Carps/metabolism , Hypoxia/metabolism , Protein Biosynthesis , Animals , Brain/metabolism , Liver/metabolism , Muscles/metabolism , Myocardium/metabolism , Phenylalanine/metabolism , RNA/genetics , RNA/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...