Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Sci Total Environ ; 904: 166844, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37689207

ABSTRACT

The Chernobyl Nuclear Power Plant (ChNPP) accident in 1986 resulted in extremely high levels of acute ionising radiation, that killed or damaged Scots pine (Pinus sylvestris) trees in the surrounding areas. Dead trees were cleared and buried, and new plantations established a few years later. Today, more than three decades later, gamma and beta-radiation near the ChNPP is still elevated compared with ambient levels but have decreased by a factor of 300 and 100, respectively. In the present work, Scots pine-trees growing at High (220 µGy h-1), Medium (11 µGy h-1), and Low (0.2 µGy h-1) total (internal + external) dose rates of chronically elevated ionising radiation in the Chernobyl Exclusion zone were investigated with respect to possible damage to DNA, cells and organelles, as well as potentially increased levels of phenolic and terpenoid antioxidants. Scots pine from the High and Medium radiation sites had elevated levels of DNA damage in shoot tips and needles as shown by the COMET assay, as well as increased numbers of resin ducts and subcellular abnormalities in needles. Needles from the High radiation site showed elevated levels of monoterpenes and condensed tannins compared with those from the other sites. In conclusion, more than three decades after the ChNPP accident substantial DNA damage and (sub)cellular effects, but also mobilisation of stress-protective substances possessing antioxidant activity were observed in Scots pine trees growing at elevated levels of ionising radiation. This demonstrates that the radiation levels in the Red Forest still significantly impact the plant community.


Subject(s)
Chernobyl Nuclear Accident , Pinus sylvestris , Pinus , Radiation Monitoring , Radiation, Ionizing , Trees , Forests
2.
Epigenetics ; 18(1): 2193936, 2023 12.
Article in English | MEDLINE | ID: mdl-36972203

ABSTRACT

Ionizing radiation (IR) impact cellular and molecular processes that require chromatin remodelling relevant for cellular integrity. However, the cellular implications of ionizing radiation (IR) delivered per time unit (dose rate) are still debated. This study investigates whether the dose rate is relevant for inflicting changes to the epigenome, represented by chromatin accessibility, or whether it is the total dose that is decisive. CBA/CaOlaHsd mice were whole-body exposed to either chronic low dose rate (2.5 mGy/h for 54 d) or the higher dose rates (10 mGy/h for 14 d and 100 mGy/h for 30 h) of gamma radiation (60Co, total dose: 3 Gy). Chromatin accessibility was analysed in liver tissue samples using Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-Seq), both one day after and over three months post-radiation (>100 d). The results show that the dose rate contributes to radiation-induced epigenomic changes in the liver at both sampling timepoints. Interestingly, chronic low dose rate exposure to a high total dose (3 Gy) did not inflict long-term changes to the epigenome. In contrast to the acute high dose rate given to the same total dose, reduced accessibility at transcriptional start sites (TSS) was identified in genes relevant for the DNA damage response and transcriptional activity. Our findings link dose rate to essential biological mechanisms that could be relevant for understanding long-term changes after ionizing radiation exposure. However, future studies are needed to comprehend the biological consequence of these findings.


Subject(s)
Chromatin , DNA Methylation , Animals , Mice , Chromatin/genetics , Gamma Rays/adverse effects , Mice, Inbred CBA , Radiation, Ionizing
3.
ACS Nano ; 17(6): 5296-5305, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36921214

ABSTRACT

A combination of synchrotron-based elemental analysis and acute toxicity tests was used to investigate the biodistribution and adverse effects in Daphnia magna exposed to uranium nanoparticle (UNP, 3-5 nm) suspensions or to uranium reference (Uref) solutions. Speciation analysis revealed similar size distributions between exposures, and toxicity tests showed comparable acute effects (UNP LC50: 402 µg L-1 [336-484], Uref LC50: 268 µg L-1 [229-315]). However, the uranium body burden was 3- to 5-fold greater in UNP-exposed daphnids, and analysis of survival as a function of body burden revealed a ∼5-fold higher specific toxicity from the Uref exposure. High-resolution X-ray fluorescence elemental maps of intact, whole daphnids from sublethal, acute exposures of both treatments revealed high uranium accumulation onto the gills (epipodites) as well as within the hepatic ceca and the intestinal lumen. Uranium uptake into the hemolymph circulatory system was inferred from signals observed in organs such as the heart and the maxillary gland. The substantial uptake in the maxillary gland and the associated nephridium suggests that these organs play a role in uranium removal from the hemolymph and subsequent excretion. Uranium was also observed associated with the embryos and the remnants of the chorion, suggesting uptake in the offspring. The identification of target organs and tissues is of major importance to the understanding of uranium and UNP toxicity and exposure characterization that should ultimately contribute to reducing uncertainties in related environmental impact and risk assessments.


Subject(s)
Uranium , Water Pollutants, Chemical , Animals , X-Rays , Daphnia/chemistry , Uranium/toxicity , Synchrotrons , Tissue Distribution , Toxicokinetics , Optical Imaging , Water Pollutants, Chemical/chemistry
4.
Environ Sci Technol ; 57(8): 3198-3205, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36799527

ABSTRACT

While adverse biological effects of acute high-dose ionizing radiation have been extensively investigated, knowledge on chronic low-dose effects is scarce. The aims of the present study were to identify hazards of low-dose ionizing radiation to Daphnia magna using multiomics dose-response modeling and to demonstrate the use of omics data to support an adverse outcome pathway (AOP) network development for ionizing radiation. Neonatal D. magna were exposed to γ radiation for 8 days. Transcriptomic analysis was performed after 4 and 8 days of exposure, whereas metabolomics and confirmative bioassays to support the omics analyses were conducted after 8 days of exposure. Benchmark doses (BMDs, 10% benchmark response) as points of departure (PODs) were estimated for both dose-responsive genes/metabolites and the enriched KEGG pathways. Relevant pathways derived using the BMD modeling and additional functional end points measured by the bioassays were overlaid with a previously published AOP network. The results showed that several molecular pathways were highly relevant to the known modes of action of γ radiation, including oxidative stress, DNA damage, mitochondrial dysfunction, protein degradation, and apoptosis. The functional assays showed increased oxidative stress and decreased mitochondrial membrane potential and ATP pool. Ranking of PODs at the pathway and functional levels showed that oxidative damage related functions had relatively low PODs, followed by DNA damage, energy metabolism, and apoptosis. These were supportive of causal events in the proposed AOP network. This approach yielded promising results and can potentially provide additional empirical evidence to support further AOP development for ionizing radiation.


Subject(s)
Adverse Outcome Pathways , Multiomics , Radiation, Ionizing , Gamma Rays , Oxidative Stress
5.
Environ Sci Technol ; 57(2): 1071-1079, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36598768

ABSTRACT

Micro- and nanoscopic X-ray techniques were used to investigate the relationship between uranium (U) tissue distributions and adverse effects to the digestive tract of aquatic model organism Daphnia magna following uranium nanoparticle (UNP) exposure. X-ray absorption computed tomography measurements of intact daphnids exposed to sublethal concentrations of UNPs or a U reference solution (URef) showed adverse morphological changes to the midgut and the hepatic ceca. Histological analyses of exposed organisms revealed a high proportion of abnormal and irregularly shaped intestinal epithelial cells. Disruption of the hepatic ceca and midgut epithelial tissues implied digestive functions and intestinal barriers were compromised. Synchrotron-based micro X-ray fluorescence (XRF) elemental mapping identified U co-localized with morphological changes, with substantial accumulation of U in the lumen as well as in the epithelial tissues. Utilizing high-resolution nano-XRF, 400-1000 nm sized U particulates could be identified throughout the midgut and within hepatic ceca cells, coinciding with tissue damages. The results highlight disruption of intestinal function as an important mode of action of acute U toxicity in D. magna and that midgut epithelial cells as well as the hepatic ceca are key target organs.


Subject(s)
Uranium , Water Pollutants, Chemical , Animals , X-Rays , Daphnia , Uranium/toxicity , Fluorescence , Synchrotrons , Gastrointestinal Tract , Water Pollutants, Chemical/toxicity
6.
Int J Radiat Biol ; 98(12): 1816-1831, 2022.
Article in English | MEDLINE | ID: mdl-35976054

ABSTRACT

BACKGROUND: Reproductive effects of ionizing radiation in organisms have been observed under laboratory and field conditions. Such assessments often rely on associations between exposure and effects, and thus lacking a detailed mechanistic understanding of causality between effects occurring at different levels of biological organization. The Adverse Outcome Pathway (AOP), a conceptual knowledge framework to capture, organize, evaluate and visualize the scientific knowledge of relevant toxicological effects, has the potential to evaluate the causal relationships between molecular, cellular, individual, and population effects. This paper presents the first development of a set of consensus AOPs for reproductive effects of ionizing radiation in wildlife. This work was performed by a group of experts formed during a workshop organized jointly by the Multidisciplinary European Low Dose Initiative (MELODI) and the European Radioecology Alliance (ALLIANCE) associations to present the AOP approach and tools. The work presents a series of taxon-specific case studies that were used to identify relevant empirical evidence, identify common AOP components and propose a set of consensus AOPs that could be organized into an AOP network with broader taxonomic applicability. CONCLUSION: Expert consultation led to the identification of key biological events and description of causal linkages between ionizing radiation, reproductive impairment and reduction in population fitness. The study characterized the knowledge domain of taxon-specific AOPs, identified knowledge gaps pertinent to reproductive-relevant AOP development and reflected on how AOPs could assist applications in radiation (radioecological) research, environmental health assessment, and radiological protection. Future advancement and consolidation of the AOPs is planned to include structured weight of evidence considerations, formalized review and critical assessment of the empirical evidence prior to formal submission and review by the OECD sponsored AOP development program.


Subject(s)
Adverse Outcome Pathways , Radiation Protection , Consensus , Risk Assessment , Reproduction
7.
Int J Radiat Biol ; 98(12): 1802-1815, 2022.
Article in English | MEDLINE | ID: mdl-36040845

ABSTRACT

PURPOSE: The concept of the adverse outcome pathway (AOP) has recently gained significant attention as to its potential for incorporation of mechanistic biological information into the assessment of adverse health outcomes following ionizing radiation (IR) exposure. This work is an account of the activities of an international expert group formed specifically to develop an AOP for IR-induced leukemia. Group discussions were held during dedicated sessions at the international AOP workshop jointly organized by the MELODI (Multidisciplinary European Low Dose Initiative) and the ALLIANCE (European Radioecology Alliance) associations to consolidate knowledge into a number of biological key events causally linked by key event relationships and connecting a molecular initiating event with the adverse outcome. Further knowledge review to generate a weight of evidence support for the Key Event Relationships (KERs) was undertaken using a systematic review approach. CONCLUSIONS: An AOP for IR-induced acute myeloid leukemia was proposed and submitted for review to the OECD-curated AOP-wiki (aopwiki.org). The systematic review identified over 500 studies that link IR, as a stressor, to leukemia, as an adverse outcome. Knowledge gap identification, although requiring a substantial effort via systematic review of literature, appears to be one of the major added values of the AOP concept. Further work, both within this leukemia AOP working group and other similar working groups, is warranted and is anticipated to produce highly demanded products for the radiation protection research community.


Subject(s)
Adverse Outcome Pathways , Leukemia, Radiation-Induced , Radiation Protection , Humans
8.
Sci Total Environ ; 846: 157457, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-35868377

ABSTRACT

Elevated levels of ionizing and non-ionizing radiation may co-occur and pose cumulative hazards to biota. However, the combined effects and underlying toxicity mechanisms of different types of radiation in aquatic plants remain poorly understood. The present study aims to demonstrate how different combined toxicity prediction approaches can collectively characterise how chronic (7 days) exposure to ultraviolet B (UVB) radiation (0.5 W m-2) modulates gamma (γ) radiation (14.9, 19.5, 43.6 mGy h-1) induced stress responses in the macrophyte Lemna minor. A suite of bioassays was applied to quantify stress responses at multiple levels of biological organisation. The combined effects (no-enhancement, additivity, synergism, antagonism) were determined by two-way analysis of variance (2 W-ANOVA) and a modified Independent Action (IA) model. The toxicological responses and the potential causality between stressors were further visualised by a network of toxicity pathways. The results showed that γ-radiation or UVB alone induced oxidative stress and programmed cell death (PCD) as well as impaired oxidative phosphorylation (OXPHOS) and photosystem II (PSII) activity in L. minor. γ-radiation also activated antioxidant responses, DNA damage repair and chlorophyll metabolism, and inhibited growth at higher dose rates (≥20 mGy h-1). When co-exposed, UVB predominantly caused non-interaction (no-enhancement or additive) effects on γ-radiation-induced antioxidant gene expression, energy quenching in PSII and growth for all dose rates, whereas antagonistic effects were observed for lipid peroxidation, OXPHOS, PCD, oxidative stress, chlorophyll metabolism and genes involved in DNA damage responses. Synergistic effects were observed for changes in photochemical quenching and non-photochemical quenching, and up-regulation of antioxidant enzyme genes (GST) at one or more dose rates, while synergistic reproductive inhibition occurred at all three γ-radiation dose rates. The present study provides mechanistic knowledge, quantitative understanding and novel analytical strategies to decipher combined effects across levels of biological organisation, which should facilitate future cumulative hazard assessments of multiple stressors.


Subject(s)
Antioxidants , Araceae , Antioxidants/metabolism , Chlorophyll/metabolism , Gamma Rays , Lipid Peroxidation , Oxidative Stress/radiation effects , Photosystem II Protein Complex/metabolism , Ultraviolet Rays
9.
Environ Sci Technol ; 56(8): 5081-5089, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35378039

ABSTRACT

A combination of synchrotron radiation-based elemental imaging, in vivo redox status analysis, histology, and toxic responses was used to investigate the uptake, biodistribution, and adverse effects of Ce nanoparticles (CeO2 NP; 10 nm; 0.5-34.96 mg Ce L-1) or Ce(NO3)3 (2.3-26 mg Ce L-1) in Caenorhabditis elegans. Elemental mapping of the exposed nematodes revealed Ce uptake in the alimentary canal prior to depuration. Retention of CeO2 NPs was low compared to that of Ce(NO3)3 in depurated individuals. X-ray fluorescence (XRF) mapping showed that Ce translocation was confined to the pharyngeal valve and foregut. Ce(NO3)3 exposure significantly decreased growth, fertility, and reproduction, caused slightly reduced fecundity. XRF mapping and histological analysis revealed severe tissue deformities colocalized with retained Ce surrounding the pharyngeal valve. Both forms of Ce activated the sod-1 antioxidant defense, particularly in the pharynx, whereas no significant effects on the cellular redox balance were identified. The CeO2 NP-induced deformities did not appear to impair the pharyngeal function or feeding ability as growth effects were restricted to Ce(NO3)3 exposure. The results demonstrate the utility of integrated submicron-resolution SR-based XRF elemental mapping of tissue-specific distribution and adverse effect analysis to obtain robust toxicological evaluations of metal-containing contaminants.


Subject(s)
Cerium , Metal Nanoparticles , Nanoparticles , Animals , Caenorhabditis elegans , Fluorescence , Humans , Metal Nanoparticles/toxicity , Pharynx , Synchrotrons , Tissue Distribution , X-Rays
10.
Ecotoxicol Environ Saf ; 225: 112793, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34544019

ABSTRACT

Understanding the effects of chronic exposure to pollutants over generations is of primary importance for the protection of humans and the environment; however, to date, knowledge on the molecular mechanisms underlying multigenerational adverse effects is scarce. We employed a systems biology approach to analyze effects of chronic exposure to gamma radiation at molecular, tissue and individual levels in the nematode Caenorhabditis elegans. Our data show a decrease of 23% in the number of offspring on the first generation F0 and more than 40% in subsequent generations F1, F2 and F3. To unveil the impact on the germline, an in-depth analysis of reproductive processes involved in gametes formation was performed for all four generations. We measured a decrease in the number of mitotic germ cells accompanied by increased cell-cycle arrest in the distal part of the gonad. Further impact on the germline was manifested by decreased sperm quantity and quality. In order to obtain insight in the molecular mechanisms leading to decreased fecundity, gene expression was investigated via whole genome RNA sequencing. The transcriptomic analysis revealed modulation of transcription factors, as well as genes involved in stress response, unfolded protein response, lipid metabolism and reproduction. Furthermore, a drastic increase in the number of differentially expressed genes involved in defense response was measured in the last two generations, suggesting a cumulative stress effect of ionizing radiation exposure. Transcription factor binding site enrichment analysis and the use of transgenic strain identified daf-16/FOXO as a master regulator of genes differentially expressed in response to radiation. The presented data provide new knowledge with respect to the molecular mechanisms involved in reproductive toxic effects and accumulated stress resulting from multigenerational exposure to ionizing radiation.


Subject(s)
Caenorhabditis elegans , Systems Biology , Animals , Caenorhabditis elegans/genetics , Germ Cells , Humans , Radiation, Ionizing , Systems Analysis
11.
Ecotoxicol Environ Saf ; 216: 112178, 2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33812211

ABSTRACT

Adaptation of the nematode Caenorhabditis elegans towards NM300K silver nanoparticles (Ag NPs) has previously been demonstrated. In the current study, the sensitivity to a range of secondary stressors (CeO2 NP, Ce3+, Cu2+, Cd2+, and Paraquat) following the multigenerational exposure to silver nanoparticles (Ag NPs NM300K) or AgNO3 was investigated. This revealed improved tolerance to the ROS inducer Paraquat with higher fecundity after pre-exposure to Ag NP, indicating an involvement of reactive oxygen species (ROS) metabolism in the adaptive response to NM300K. The potential contribution of the antioxidant defenses related to adaptive responses was investigated across six generations of exposure using the sod-1::GFP reporter (GA508), and the Grx1-roGFP2 (GRX) biosensor strains. Results showed an increase in sod-1 expression by the F3 generation, accompanied by a reduction of GSSG/GSH ratios, from both AgNO3 and Ag NP exposures. Continuous exposure to AgNO3 and Ag NP until the F6 generation resulted in a decreased sod-1 expression, with a concomitant increase in GSSG/GSH ratios. The results thus show that despite an initial enhancement, the continuous exposure to Ag caused a severe impairment of the antioxidant defense capacity in C. elegans.

12.
Sci Rep ; 11(1): 4142, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33602989

ABSTRACT

Gamma radiation produces DNA instability and impaired phenotype. Previously, we observed negative effects on phenotype, DNA methylation, and gene expression profiles, in offspring of zebrafish exposed to gamma radiation during gametogenesis. We hypothesize that previously observed effects are accompanied with changes in the expression profile of non-coding RNAs, inherited by next generations. Non-coding RNA expression profile was analysed in F1 offspring (5.5 h post-fertilization) by high-throughput sequencing 1 year after parental irradiation (8.7 mGy/h, 5.2 Gy total dose). Using our previous F1-γ genome-wide gene expression data (GSE98539), hundreds of mRNAs were predicted as targets of differentially expressed (DE) miRNAs, involved in pathways such as insulin receptor, NFkB and PTEN signalling, linking to apoptosis and cancer. snRNAs belonging to the five major spliceosomal snRNAs were down-regulated in the F1-γ group, Indicating transcriptional and post-transcriptional alterations. In addition, DEpiRNA clusters were associated to 9 transposable elements (TEs) (LTR, LINE, and TIR) (p = 0.0024), probable as a response to the activation of these TEs. Moreover, the expression of the lincRNAs malat-1, and several others was altered in the offspring F1, in concordance with previously observed phenotypical alterations. In conclusion, our results demonstrate diverse gamma radiation-induced alterations in the ncRNA profiles of F1 offspring observable 1 year after parental irradiation.


Subject(s)
Gamma Rays/adverse effects , RNA, Untranslated/genetics , Zebrafish/genetics , Animals , DNA Damage/genetics , DNA Damage/radiation effects , DNA Methylation/genetics , DNA Methylation/radiation effects , Gametogenesis/genetics , Gametogenesis/radiation effects , Signal Transduction/genetics , Signal Transduction/radiation effects , Transcriptome/genetics , Transcriptome/radiation effects
13.
Sci Rep ; 11(1): 3795, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33589735

ABSTRACT

Nosocomial infections caused by enterococci are an ongoing global threat. Thus, finding therapeutic agents for the treatment of such infections are crucial. Some Enterococcus faecalis strains are able to produce antimicrobial peptides called bacteriocins. We analyzed 65 E. faecalis isolates from 43 food samples and 22 clinical samples in Egypt for 17 common bacteriocin-encoding genes of Enterococcus spp. These genes were absent in 11 isolates that showed antimicrobial activity putatively due to bacteriocins (three from food, including isolate OS13, and eight from clinical isolates). The food-isolated E. faecalis OS13 produced bacteriocin-like inhibitory substances (BLIS) named enterocin OS13, which comprised two peptides (enterocin OS13α OS13ß) that inhibited the growth of antibiotic-resistant nosocomial E. faecalis and E. faecium isolates. The molecular weights of enterocin OS13α and OS13ß were determined as 8079 Da and 7859 Da, respectively, and both were heat-labile. Enterocin OS13α was sensitive to proteinase K, while enterocin OS13ß was resistant. Characterization of E. faecalis OS13 isolate revealed that it belonged to sequence type 116. It was non-hemolytic, bile salt hydrolase-negative, gelatinase-positive, and sensitive to ampicillin, penicillin, vancomycin, erythromycin, kanamycin, and gentamicin. In conclusion, BLIS as enterocin OS13α and OS13ß represent antimicrobial agents with activities against antibiotic-resistant enterococcal isolates.


Subject(s)
Bacteriocins/pharmacology , Cross Infection/drug therapy , Drug Resistance, Bacterial/drug effects , Enterococcus faecalis/chemistry , Bacteriocins/chemistry , Bacteriocins/isolation & purification , Cross Infection/microbiology , Drug Resistance, Bacterial/genetics , Egypt , Enterococcus faecalis/drug effects , Enterococcus faecalis/genetics , Enterococcus faecalis/pathogenicity , Enterococcus faecium/drug effects , Enterococcus faecium/pathogenicity , Food Microbiology , Humans , Microbial Sensitivity Tests
14.
Article in English | MEDLINE | ID: mdl-33198926

ABSTRACT

Mitochondria are vulnerable to the effects of ionizing radiation; damage to mitochondrial DNA (mtDNA) may be more extensive and persistent than damage to nuclear DNA (nDNA). Variation in mtDNA copy number has been proposed as a marker for mitochondrial dysfunction in response to ionizing radiation. We have developed a precise and sensitive duplex droplet digital PCR (ddPCR) method for quantitation of the mtDNA/nDNA ratio in the model organism Caenorhabditis elegans. The effect on this ratio was investigated over a wide range of doses (0.03-72 Gy) of chronic gamma irradiation. Five mitochondrial targets and two nuclear reference genes were amplified pairwise in duplex PCR format (one mitochondrial and one nuclear target per PCR) by both ddPCR and quantitative PCR (qPCR). The results showed that ddPCR but not qPCR enabled detection of a significant increase in mtDNA copy number (1.6 ± 0.1-fold) for nematodes exposed to high doses (≥24 Gy). Thus, ddPCR provided higher precision and greater sensitivity than qPCR for detection of mtDNA copy number variation. The variation followed a Hill-type dose response with threshold 10.3 ± 1 Gy. This strongly suggests that chronic genotoxic stress affects mtDNA replication. The duplex ddPCR method is a novel, high-precision, sensitive tool for determination of mitochondrial DNA copy number variation and function in C. elegans.


Subject(s)
Caenorhabditis elegans/radiation effects , DNA Copy Number Variations/genetics , DNA Damage , DNA, Mitochondrial/genetics , Polymerase Chain Reaction/methods , Radiation, Ionizing , Animals , Caenorhabditis elegans/genetics , DNA Replication/genetics , DNA Replication/radiation effects , Dose-Response Relationship, Radiation , Mitochondria/genetics , Mitochondria/radiation effects
15.
Braz J Microbiol ; 51(4): 1527-1538, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32542423

ABSTRACT

Bacteriocins are ribosomally synthesized antimicrobial peptides produced by prokaryotes. Here, the molecular characterization of aureocin 4181, a bacteriocin produced by Staphylococcus aureus 4181, a strain involved in bovine mastitis, is presented. Aureocin 4181 gene cluster (aurRID1CBAT) was mined from scaffold 15 of the draft genome of its producer strain. Three (AurABC) out of the four structural peptides of aureocin 4181 are identical to those of aureocin A70, except for AurD1 of aureocin 4181, which showed a conservative substitution of Leu29 to Phe29 when compared to AurD of aureocin A70. According to molecular mass determination and peptide sequencing, combined with genome sequencing data, aureocin 4181 is an N-formylated variant of aureocin A70. The analysis of its antimicrobial spectrum was extended to include strains of the two major contagious pathogens involved in bovine mastitis, S. aureus and Streptococcus agalactiae. Aureocin 4181 exhibited a striking activity against S. aureus, inhibiting most strains tested. Besides having a broader spectrum of activity, aureocin 4181 exhibited a stronger bacteriolytic action against the target strains and proved to be from two- to fourfold more active than aureocin A70 against S. aureus. Aureocin 4181 has potential to become an alternative drug for prevention and control of mastitic staphylococci, a pathogen that imposes a huge economic burden to dairy industry worldwide. It also represents the third four-component bacteriocin described in the literature, the second in staphylococci.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteriocins/pharmacology , Mastitis, Bovine/microbiology , Staphylococcal Infections , Staphylococcus aureus , Animals , Brazil , Cattle , Female , Staphylococcal Infections/microbiology , Staphylococcal Infections/veterinary , Staphylococcus aureus/drug effects , Staphylococcus aureus/metabolism
16.
Int J Microbiol ; 2020: 9309628, 2020.
Article in English | MEDLINE | ID: mdl-32351575

ABSTRACT

In this study, five bacteriocin-producing Lactococcus lactis strains were identified from different naturally fermented Brazilian sausages. Ion exchange and reversed-phase chromatographies were used to purify the bacteriocins from culture supernatant of the five strains. Mass spectrometry (MALDI-TOF/TOF) showed that the molecular masses of the bactericoins from L. lactis ID1.5, ID3.1, ID8.5, PD4.7, and PR3.1 were 3330.567 Da, 3330.514 Da, 3329.985 Da, 3329.561 Da, and 3329.591 Da, respectively. PCR product sequence analysis confirmed that the structural genes of bacteriocins produced by the five isolates are identical to the lantibiotic nisin Z. Optimal nisin Z production was achieved in tryptone and casein peptone, at pH 6.0 or 6.5. The most favorable temperatures for nisin Z production were 25°C and 30°C, and its production was better under aerobic than anaerobic condition. The type of carbon source appeared to be an important factor for nisin Z production. While sucrose was found to be the most efficient carbon source for nisin Z production by four L. lactis isolates, fructose was the best for one isolate. Lactose was also a good energy source for nisin Z production. Surprisingly, glucose was clearly the poorest carbon source for nisin Z production. The five isolates produced different amounts of the bacteriocin, L. lactis ID1.5 and ID8.5 isolates being the best nisin Z producers. DNA sequence analysis did not reveal any sequence differences in the nisZ and nisF promoter regions that could explain the differences in nisin Z production, suggesting that there should be other factors responsible for differential nisin Z production by the isolates.

17.
Sci Total Environ ; 721: 137665, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32169641

ABSTRACT

The current study provides an in vivo analysis of the production of reactive oxygen species (ROS) and oxidative stress in the nematode Caenorhabditis elegans following exposure to EU reference silver nanoparticles NM300K and AgNO3. Induction of antioxidant defenses was measured through the application of a SOD-1 reporter, and the HyPer and GRX biosensor strains to monitor changes in the cellular redox state. Both forms of Ag resulted in an increase in sod-1 expression, elevated H2O2 levels and an imbalance in the cellular GSSG/GSH redox status. Microscopy analysis of the strains revealed that AgNO3 induced ROS-related effects in multiple tissues, including the pharynx, intestinal cells and muscle tissues. In contrast, NM300K resulted in localized ROS production and oxidative stress, specifically in tissues surrounding the intestinal lumen. This indicates that Ag from AgNO3 exposure was readily transported across the whole body, while Ag or ROS from NM300K exposure was predominantly confined within the luminal tissues. Concentrations resulting in an increase in ROS production and changes in GSSG/GSH ratio were in line with the levels associated with observed physiological toxic effects. However, sod-1 was not induced at the lowest Ag concentrations, although reprotoxicity was seen at these levels. While both forms of Ag caused oxidative stress, impaired development, and reprotoxicity, the results suggest different involvement of ROS production to the toxic effects of AgNO3versus NM300K.


Subject(s)
Metal Nanoparticles , Silver , Animals , Caenorhabditis elegans , Hydrogen Peroxide , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species , Silver Nitrate
18.
Sci Total Environ ; 717: 137068, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32062256

ABSTRACT

Robust biomarkers of exposure to chronic low dose stressors such as ionizing radiation, particularly following chronic low doses and dose-rates, are urgently needed. MicroRNAs (miRNA) have emerged as promising markers of exposure to high dose and dose-rate. Here, we evaluated the feasibility of classifying γ-radiation exposure at different dose rates based on miRNA expression levels. Our objective was to identify miRNA-signatures discriminating between exposure to γ-radiation or not, including exposure to chronic low dose rates. We exposed male CBA/CaOlaHsd and C57BL/6NHsd wild-type mice to 0, 2.5, 10 and 100 mGy/h γ-irradiation (3 Gy total-dose). From an initial screening of 576 miRNAs, a set of 21 signature-miRNAs was identified based on differential expression (>± 2-fold or p < 0.05). This 21-signature miRNA panel was investigated in 39 samples from 4/5 livers/group/mouse strain. A set of significantly differentially expressed miRNAs was identified in all γ-irradiated samples. Most miRNAs were upregulated in all γ-irradiated groups compared to control, and functional analysis of these miRNAs revealed involvement in several cancer-related signaling pathways. To identify miRNAs that distinguished exposed mice from controls, nine prediction methods; i.e., six variants of generalized regression models, random-forest, boosted-tree and nearest-shrunken-centroid (PAM) were used. The generalized regression methods seem to outperform the other prediction methods for classification of irradiated and control samples. Using the 21-miRNA panel in the prediction models, we identified sets of candidate miRNA-markers that predict exposure to γ-radiation. Among the top10 miRNA predictors, contributing most in each of the three γ-irradiated groups, three miRNA predictors (miR-140-3p, miR-133a-5p and miR-145a-5p) were common. Three miRNAs, miR-188-3p/26a-5p/26b-5p, were specific for lower dose-rate γ-radiation. Similarly, exposure to the high dose-rates was also correctly predicted, including mice exposed to X-rays. Our approach identifying miRNA-based signature panels may be extended to classify exposure to environmental, nutritional and life-style-related stressors, including chronic low-stress scenarios.


Subject(s)
MicroRNAs/genetics , Radiation Exposure , Animals , Biomarkers , Gene Expression Profiling , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA
19.
Free Radic Biol Med ; 152: 583-596, 2020 05 20.
Article in English | MEDLINE | ID: mdl-31805397

ABSTRACT

In the current study, effects of chronic exposure to ionizing gamma radiation were assessed in the radioresistant nematode Caenorhabditis elegans in order to understand whether antioxidant defences (AODs) could ameliorate radical formation, or if increased ROS levels would cause oxidative damage. This analysis was accompanied by phenotypical as well as molecular investigations, via assessment of reproductive capacity, somatic growth and RNA-seq analysis. The use of a fluorescent reporter strain (sod1::gfp) and two ratiometric biosensors (HyPer and Grx1-roGFP2) demonstrated increased ROS production (H2O2) and activation of AODs (SOD1 and Grx) in vivo. The data showed that at dose-rates ≤10 mGy h-1 defence mechanisms were able to prevent the manifestation of oxidative stress. In contrast, at dose-rates ≥40 mGy h-1 the continuous formation of radicals caused a redox shift, which lead to oxidative stress transcriptomic responses, including changes in mitochondrial functions, protein degradation, lipid metabolism and collagen synthesis. Moreover, genotoxic effects were among the most over-represented functions affected by chronic gamma irradiation, as indicated by differential regulation of genes involved in DNA damage, DNA repair, cell-cycle checkpoints, chromosome segregation and chromatin remodelling. Ultimately, the exposure to gamma radiation caused reprotoxic effects, with >20% reduction in the number of offspring per adult hermaphrodite at dose-rates ≥40 mGy h-1, accompanied by the down-regulation of more than 300 genes related to reproductive system, apoptosis, meiotic functions and gamete development and fertilization.


Subject(s)
Caenorhabditis elegans , Hydrogen Peroxide , Animals , Caenorhabditis elegans/genetics , Gamma Rays , Oxidative Stress , Reactive Oxygen Species
20.
Sci Total Environ ; 705: 135912, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-31846819

ABSTRACT

High energy gamma radiation is potentially hazardous to organisms, including aquatic invertebrates. Although extensively studied in a number of invertebrate species, knowledge on effects induced by gamma radiation is to a large extent limited to the induction of oxidative stress and DNA damage at the molecular/cellular level, or survival, growth and reproduction at the organismal level. As the knowledge of causal relationships between effects occurring at different levels of biological organization is scarce, the ability to provide mechanistic explanation for observed adverse effects is limited, and thus development of Adverse Outcome Pathways (AOPs) and larger scale implementation into next generation hazard and risk predictions is restricted. The present study was therefore conducted to assess the effects of high-energy gamma radiation from cobalt-60 across multiple levels of biological organization (i.e., molecular, cellular, tissue, organ and individual) and characterize the major toxicity pathways leading to impaired reproduction in the model freshwater crustacean Daphnia magna (water flea). Following gamma exposure, a number of bioassays were integrated to measure relevant toxicological endpoints such as gene expression, reactive oxygen species (ROS), lipid peroxidation (LPO), neutral lipid storage, adenosine triphosphate (ATP) content, apoptosis, ovary histology and reproduction. A non-monotonic pattern was consistently observed across the levels of biological organization, albeit with some variation at the lower end of the dose-rate scale, indicating a complex response to radiation doses. By integrating results from different bioassays, a novel pathway network describing the key toxicity pathways involved in the reproductive effects of gamma radiation were proposed, such as DNA damage-oocyte apoptosis pathway, LPO-ATP depletion pathway, calcium influx-endocrine disruption pathway and DNA hypermethylation pathway. Three novel AOPs were proposed for oxidative stressor-mediated excessive ROS formation leading to reproductive effect, and thus introducing the world's first AOPs for non-chemical stressors in aquatic invertebrates.


Subject(s)
Daphnia , Animals , Female , Gamma Rays , Lipid Peroxidation , Oxidative Stress , Reproduction , Water Pollutants, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL
...