Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 144(45): 20610-20619, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36318748

ABSTRACT

Vibronic coupling has been proposed to play a decisive role in promoting ultrafast singlet fission (SF), the conversion of a singlet exciton into two triplet excitons. Its inherent complexity is challenging to explore, both from a theoretical and an experimental point of view, due to the variety of potentially relevant vibrational modes. Here, we report a study on blends of the prototypical SF chromophore pentacene in which we engineer the polarizability of the molecular environment to scan the energy of the excited singlet state (S1) continuously over a narrow energy range, covering vibrational sublevels of the triplet-pair state (1(TT)). Using femtosecond transient absorption spectroscopy, we probe the dependence of the SF rate on energetic resonance between vibronic states and, by comparison with simulation, identify vibrational modes near 1150 cm-1 as key in facilitating ultrafast SF in pentacene.

2.
Angew Chem Int Ed Engl ; 60(17): 9450-9458, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33577094

ABSTRACT

Ultrabright fluorescent nanoparticles (NPs) hold great promise for demanding bioimaging applications. Recently, extremely bright molecular crystals of cationic fluorophores were obtained by hierarchical coassembly with cyanostar anion-receptor complexes. These small-molecule ionic isolation lattices (SMILES) ensure spatial and electronic isolation to prohibit aggregation quenching of dyes. We report a simple, one-step supramolecular approach to formulate SMILES materials into NPs. Rhodamine-based SMILES NPs stabilized by glycol amphiphiles show high fluorescence quantum yield (30 %) and brightness per volume (5000 M-1 cm-1 /nm3 ) with 400 dye molecules packed into 16-nm particles, corresponding to a particle absorption coefficient of 4×107  M-1 cm-1 . UV excitation of the cyanostar component leads to higher brightness (>6000 M-1 cm-1 / nm3 ) by energy transfer to rhodamine emitters. Coated NPs stain cells and are thus promising for bioimaging.


Subject(s)
Fluorescent Dyes/chemistry , Nanoparticles/chemistry , Rhodamines/chemistry , Small Molecule Libraries/chemistry , HEK293 Cells , Humans , Molecular Structure , Optical Imaging , Particle Size , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...