Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38935474

ABSTRACT

Bioinspired robotics and smart prostheses have many applications in the healthcare sector. Patients can use them for rehabilitation or day-to-day assistance, allowing them to regain some agency over their movements. The most common way to make these smart artificial limbs is by adding a "human-like" electronic skin to detect force and emulate touch detection. This paper presents a fully integrated CMOS-based stress sensor design with a high dynamic range (100 kPa to 100 MPa) supported by an adaptive gain-controlled chopping amplifier. The sensor chip includes four identical sensing structures capable of measuring the chip's local stress gradient and complete readout circuitry supporting data transfer via I2C protocol. The sensor takes 10.2 ms to measure through all four structures and goes into a low-power mode when not in use. The designed chip consumes a total current of ~300 µA for one complete operation cycle and ~30 µA during low power mode in simulations. Moreover, the complete design is CMOS-based, making it easier for large-scale commercial fabrication and more affordable for patients in the long run. This paper further proposes the concept of a tactile smart skin by integrating a network of sensor chips with flexible polymers.

2.
Biosensors (Basel) ; 14(5)2024 May 10.
Article in English | MEDLINE | ID: mdl-38785715

ABSTRACT

Electrochemical impedance spectroscopy (EIS) is becoming more and more relevant for the characterization of biosensors employing interdigitated electrodes. We compare four different sensor topologies for an exemplary use case of ion sensing to extract recommendations for the design optimizations of impedimetric biosensors. Therefore, we first extract how sensor design parameters affect the sensor capacitance using analytical calculations and finite element (FEM) simulations. Moreover, we develop equivalent circuit models for our sensor topologies and validate them using FEM simulations. As a result, the impedimetric sensor response is better understood, and sensitive and selective frequency ranges can be determined for a given sensor topology. From this, we extract design optimizations for different sensing principles.


Subject(s)
Biosensing Techniques , Dielectric Spectroscopy , Electric Capacitance , Electrodes , Ions , Finite Element Analysis
3.
Sensors (Basel) ; 21(4)2021 Feb 21.
Article in English | MEDLINE | ID: mdl-33670022

ABSTRACT

Conventional pathogenic bacteria-detection methods are lab-bound, time-consuming and need trained personnel. Microelectrodes can be used to recognize harmful microorganisms by dielectric impedance spectroscopy. However, crucial for this spectroscopy method are the spatial dimensions and layout of the electrodes, as the corresponding distribution of the electric field defines the sensor system parameters such as sensitivity, SNR, and dynamic range. Therefore, a variety of sensor models are created and evaluated. FEM simulations in 2D and 3D are conducted for this impedimetric sensor. The authors tested differently shaped structures, verified the linear influence of the excitation amplitude and developed a mathematical concept for a quality factor that practically allows us to distinguish arbitrary sensor designs and layouts. The effect of guard electrodes blocking outer influences on the electric field are investigated, and essential configurations are explored. The results lead to optimized electronic sensors in terms of geometrical dimensions. Possible material choices for real sensors as well as design and layout recommendations are presented.


Subject(s)
Bacteria/isolation & purification , Biosensing Techniques , Dielectric Spectroscopy , Microelectrodes , Electric Impedance
SELECTION OF CITATIONS
SEARCH DETAIL
...