Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Autophagy ; 5(2): 270-2, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19182523

ABSTRACT

Nucleus-vacuole (NV) junctions are formed in Saccharomyces cerevisiae through interactions between Vac8 in the vacuole membrane and Nvj1 in the perinuclear ER. Upon starvation, vesicles containing part of the nucleus emanate from these contact sites and finally pinch off into invaginations of the vacuole. Due to its morphological similarity to microautophagy this process had been termed "piecemeal microautophagy of the nucleus" (PMN). We recently discovered that a number of ATG genes required for macroautophagy and micropexophagy are also required for PMN and accordingly named it micronucleophagy. Therefore, PMN represents a novel model system to investigate the functions of the highly conserved but poorly understood core autophagic apparatus. We here extend the morphological analysis of PMN using immunogold and freeze fracture electron microscopy.


Subject(s)
Autophagy , Cell Nucleus/genetics , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Cell Nucleus/ultrastructure , Freeze Fracturing , Saccharomyces cerevisiae/ultrastructure , Vacuoles/ultrastructure
2.
Clin Pharmacol Ther ; 71(6): 479-87, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12087351

ABSTRACT

BACKGROUND: High-dose busulfan is widely used as part of conditioning regimens for patients who are undergoing hematopoietic stem cell or bone marrow transplantation. High plasma concentrations of busulfan have been linked to the occurrence of hepatic venoocclusive disease (VOD), a severe complication associated with a high mortality. Because conjugation with glutathione, the major route of biotransformation of busulfan, is predominantly catalyzed by the isozyme glutathione S-transferase A1 (GSTA1), we hypothesized that low expression or function of GSTA1 in liver caused by genetic polymorphisms may be the mechanism underlying VOD. METHODS: Immunoblot analysis of GSTA and measurement of busulfan-glutathione conjugation by liquid chromatography-mass spectrometry were performed in 48 normal human liver samples. To search for polymorphisms, the complete GSTA1 coding regions and the promoter fragment were sequenced. All results were compared by multivariate analysis. RESULTS: Absolute levels of GSTA protein and formation rates of busulfan-glutathione conjugate displayed a 7- and 8-fold range, from 240 to 1600 pmol/mg and 25 to 205 pmol/min per milligram of total cytosolic protein, respectively, and correlate (r2 = 0.49, P <.0001). A total of 8 single nucleotide polymorphisms (SNPs) of GSTA1 were identified, 1 of which was a silent mutation in exon 5 (A375G); all others were found in the promoter region. Haplotype analysis revealed the existence of 5 defined alleles. There was no significant relationship between any of the GSTA1 SNPs or haplotypes and either hepatic glutathione S-transferase A (GSTA) expression or GSTA1 function. CONCLUSIONS: The identified GSTA1 polymorphisms are not likely to be related to the VOD because they do not appear to be associated with changes in GSTA expression or function. Compared with other members of the GST family, GSTA1 displays surprisingly little variation.


Subject(s)
Busulfan/metabolism , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Immunosuppressive Agents/metabolism , Polymorphism, Genetic , DNA Primers , Gene Expression Regulation, Enzymologic , Genotype , Haplotypes , Humans , Immunoblotting , Multivariate Analysis , Phenotype , Polymerase Chain Reaction , Promoter Regions, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...