Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 126(4): 869-877, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35077175

ABSTRACT

The affinity of hydroxide ions for methyl hydration shells is assessed using a combined experimental and theoretical analysis of tert-butyl alcohol (TBA) dissolved in pure water and aqueous NaOH and NaI. The experimental results are obtained using Raman multivariate curve resolution (Raman-MCR) and a new three-component total least squares (Raman-TLS) spectral decomposition strategy used to highlight vibrational perturbations resulting from interactions between TBA and aqueous ions. The experiments are interpreted and extended with the aid of effective fragment potential molecular dynamics (EFP-MD) simulations, as well as Kirkwood-Buff calculations and octanol/water partition measurements, to relate TBA-ion distribution functions to TBA solubility changes. The combined experimental and simulation results reveal that methyl group hydration shells more strongly expel hydroxide than iodide anions, whose populations near the methyl groups of TBA are predicted to be correlated with sodium counterion localization near the TBA hydroxyl group.


Subject(s)
Water , tert-Butyl Alcohol , Iodides , Ions , Molecular Dynamics Simulation
2.
J Phys Chem B ; 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34133177

ABSTRACT

Raman multivariate curve resolution is used to decompose the vibrational spectra of aqueous hydrogen peroxide (H2O2) into pure water, dilute H2O2, and concentrated H2O2 spectral components. The dilute spectra reveal four sub-bands in the OH stretch region, assigned to the OH stretch and Fermi resonant bend overtone of H2O2, and two nonequivalent OH groups on water molecules that donate a hydrogen bond to H2O2. At high concentrations, a spectral component resembling pure H2O2 emerges. Our results further demonstrate that H2O2 perturbs the structure of water significantly less than either methanol or sodium chloride of the same concentration, as evidenced by comparing the hydration-shell spectra of tert-butyl alcohol dissolved in the three aqueous solutions.

3.
J Phys Chem B ; 125(5): 1439-1446, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33512171

ABSTRACT

The structures of the ion-pairs formed in aqueous NaOH and LiOH solutions are elucidated by combining Raman multivariate curve resolution (Raman-MCR) experiments and ab initio molecular dynamics (AIMD) simulations. The results extend prior findings to reveal that the initially formed ion-pairs are predominantly water-shared, with the hydroxide ion retaining its full first hydration-shell, while direct contact ion-pairing only becomes significant at higher concentrations. Our results confirm previous experiments and simulations indicating greater ion-pairing in aqueous LiOH than NaOH as well as at high temperatures. Our results further imply that NaOH and LiOH ion-pairing free energies have an approximately linear (rather than square-root) dependence on ion concentration (in the molar range), with positive enthalpies and entropies that increase with concentration, thus implying that water-mediated interactions enthalpically disfavor and entropically favor ion-pair formation.

4.
Phys Chem Chem Phys ; 22(20): 11724-11730, 2020 May 28.
Article in English | MEDLINE | ID: mdl-32409791

ABSTRACT

The influence of molecular crowding on water structure, and the associated crossover behavior, is quantified using Raman multivariate curve resolution (Raman-MCR) hydration-shell vibrational spectroscopy of aqueous tert-butyl alcohol, 2-butyl alcohol and 2-butoxyethanol solutions of variable concentration and temperature. Changes in the hydration-shell OH stretch band shape and mean frequency are used to identify the temperature at which the hydration-shell crosses over from a more ordered to less ordered structure, relative to pure water. The influence of crowding on the crossover is found to depend on solute size and shape in a way that is correlated with the corresponding infinitely dilute hydration-shell structure (and the corresponding first hydration-shell spectra are invariably very similar to pure water). Analysis of the results using a Muller-like two-state equilibrium between more ordered and less ordered hydration-shell structures implies that crossover temperature changes are dictated primarily by enthalpic stabilization of the more ordered hydration-shell structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...