Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 114(37): 9900-9905, 2017 09 12.
Article in English | MEDLINE | ID: mdl-28847931

ABSTRACT

Oncogenic Ras causes proliferation followed by premature senescence in primary cells, an initial barrier to tumor development. The role of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in regulating these two cellular outcomes is poorly understood. During ER stress, the inositol requiring enzyme 1α (IRE1α) endoribonuclease (RNase), a key mediator of the UPR, cleaves Xbp1 mRNA to generate a potent transcription factor adaptive toward ER stress. However, IRE1α also promotes cleavage and degradation of ER-localized mRNAs essential for cell death. Here, we show that oncogenic HRas induces ER stress and activation of IRE1α. Reduction of ER stress or Xbp1 splicing using pharmacological, genetic, and RNAi approaches demonstrates that this adaptive response is critical for HRas-induced proliferation. Paradoxically, reduced ER stress or Xbp1 splicing promotes growth arrest and premature senescence through hyperactivation of the IRE1α RNase. Microarray analysis of IRE1α- and XBP1-depleted cells, validation using RNA cleavage assays, and 5' RACE identified the prooncogenic basic helix-loop-helix transcription factor ID1 as an IRE1α RNase target. Further, we demonstrate that Id1 degradation by IRE1α is essential for HRas-induced premature senescence. Together, our studies point to IRE1α as an important node for posttranscriptional regulation of the early Ras phenotype that is dependent on both oncogenic signaling as well as stress signals imparted by the tumor microenvironment and could be an important mechanism driving escape from Ras-induced senescence.


Subject(s)
Endoplasmic Reticulum Stress/physiology , Endoribonucleases/metabolism , Protein Serine-Threonine Kinases/metabolism , Ribonucleases/metabolism , ras Proteins/genetics , Animals , Apoptosis/physiology , Cell Proliferation/physiology , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/physiology , Endoplasmic Reticulum Stress/genetics , Endoribonucleases/genetics , Inositol/metabolism , Keratinocytes/cytology , Keratinocytes/physiology , Mice , Mice, Inbred C57BL , Primary Cell Culture , Protein Serine-Threonine Kinases/genetics , RNA Splicing , RNA Stability , RNA, Messenger/metabolism , Ribonucleases/genetics , Signal Transduction , Transcription Factors/metabolism , Unfolded Protein Response , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism , ras Proteins/metabolism
2.
Cancer Immunol Res ; 5(3): 198-210, 2017 03.
Article in English | MEDLINE | ID: mdl-28137717

ABSTRACT

Heterogeneity in tumor immune responses is a poorly understood yet critical parameter for successful immunotherapy. In two doxycycline-inducible models where oncogenic H-RasG12V is targeted either to the epidermal basal/stem cell layer with a Keratin14-rtTA transgene (K14Ras), or committed progenitor/suprabasal cells with an Involucrin-tTA transgene (InvRas), we observed strikingly distinct tumor immune responses. On threshold doxycycline levels yielding similar Ras expression, tumor latency, and numbers, tumors from K14Ras mice had an immunosuppressed microenvironment, whereas InvRas tumors had a proinflammatory microenvironment. On a Rag1-/- background, InvRas mice developed fewer and smaller tumors that regressed over time, whereas K14Ras mice developed more tumors with shorter latency than Rag1+/+ controls. Adoptive transfer and depletion studies revealed that B-cell and CD4 T-cell cooperation was critical for tumor yield, lymphocyte polarization, and tumor immune phenotype in Rag1+/+ mice of both models. Coculture of tumor-conditioned B cells with CD4 T cells implicated direct contact for Th1 and regulatory T cell (Treg) polarization, and CD40-CD40L for Th1, Th2, and Treg generation, a response not observed from splenic B cells. Anti-CD40L caused regression of InvRas tumors but enhanced growth in K14Ras, whereas a CD40 agonist mAb had opposite effects in each tumor model. These data show that position of tumor-initiating cells within a stratified squamous epithelial tissue provokes distinct B- and CD4 T-cell interactions, which establish unique tumor microenvironments that regulate tumor development and response to immunotherapy. Cancer Immunol Res; 5(3); 198-210. ©2017 AACR.


Subject(s)
Carcinoma, Squamous Cell/etiology , Carcinoma, Squamous Cell/metabolism , Genes, ras , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/metabolism , Amino Acid Substitution , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Biomarkers , CD40 Antigens/metabolism , CD40 Ligand/metabolism , Carcinoma, Squamous Cell/pathology , Cell Communication , Codon , Gene Expression , Lymphocyte Activation/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mice , Mice, Knockout , Mutation , Neoplasm Grading , Neoplastic Stem Cells/pathology , Phenotype , Protein Binding , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...