Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38651377

ABSTRACT

Switchable spin dynamic properties in single-molecule magnets (SMMs) via an applied stimulus have applications in single-molecule devices. Many SMMs containing heavy lanthanoid ions with strong uniaxial magnetic anisotropy have been reported to exhibit SMM characteristics in the absence of an external magnetic field. On the other hand, SMMs containing light lanthanoid cerium(III) (Ce3+) ions exhibit field-induced slow magnetic relaxation. We investigated the chemical conversion of a diamagnetic Ce4+ ion (4f0) to a paramagnetic Ce3+ ion (4f1) in Ce-phthalocyaninato double-decker complexes (TBA+[Ce(obPc)2]- (1) and TBA+[Ce(Pc)2]- (2)) which exhibit field-induced SMM behaviour due to a 4f1 system. The phthalocyaninato ligands with electron-donating substituents (obPc2- = 2,3,9,10,16,17,23,24-octabutoxyphthalocyaninato) in 1 have a significant effect on the valence state of the Ce ion, which is reflected in its magnetic properties due to the mixed valence state of the Ce ion. Given that Ce double-decker complexes with π-conjugated ligands undergo intramolecular electron transfer (IET) to the Ce ion mixed valence state, characterised by a mixture of 4f0 and 4f1 configurations, we examined the dynamic disorder inherent in IET influencing magnetic relaxation.

2.
Dalton Trans ; 52(42): 15503-15509, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37577755

ABSTRACT

New Magnus' green salt (MGS) analogues, [M(dabdOH)2][MCl4]·2H2O (dabdOH = (2S,3S)-2,3-diaminobutane-1,4-diol; M = Pd (1) and M = Pt(2)), in which [M(dabdOH)2]2+ and [MCl4]2- are stacked alternately to form linear chains, were obtained as hexagonal plate crystals. The hexagonal shape and large crystal size are unprecedented features as MGS analogues. An unusual trigonal grade separation of chain complexes has been revealed by the structural analysis. 1 and 2 exhibited remarkable yellow and pink colours, respectively, which are derived from weak M⋯M interactions. The dabdOH ligand, which has an additional hydrogen donor group (hydroxy group), produces a multiple-hydrogen-bond network. The combination of intrachain and interchain hydrogen bonds gives a two-dimensional (2D) hydrogen-bond sheet, and each 2D sheet is indirectly connected by hydrogen bonds via lattice water molecules. The OH-functionalised ligand greatly increases the hydrophilicity of the MGS analogues and yields the largest single crystals of all MGS analogues reported so far. The trigonal grade-separated chain structure is likely due to the geometric matching between the periodicity of chains and the short axis width of the chain. This strategy opens up new insight for preparing large crystals of MGS analogues and for constructing trigonal grade-separated nanowires in molecular crystals.

3.
Chemphyschem ; 24(4): e202200618, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36287210

ABSTRACT

We report the water adsorption/desorption behavior and dynamic magnetic properties of the Pt-Cl chain complex [{[Pt(en)2 ][PtCl2 (en)2 ]}3 ][{(MnCl5 )Cl3 }2 ] ⋅ 12H2 O (1). Upon heating 1 in a vacuum, we obtained the dehydrated form [{[Pt(en)2 ][PtCl2 (en)2 ]}3 ][{(MnCl5 )Cl3 }2 ] (1DH). The framework structures of 1 and 1DH are identical, and both complexes underwent slow magnetic relaxation. However, the magnetic relaxation times for 1DH were shorter than those for 1, meaning that the dynamic magnetic properties were controlled upon water vapor adsorption/desorption. From detailed analyses of the dynamic magnetic behavior, a phonon-bottleneck effect contributes to the magnetic relaxation processes. We discuss the mechanism for the changes in the magnetic relaxation processes upon dehydration in terms of the heat capacity and thermal conductivity.

4.
Inorg Chem ; 61(35): 14067-14074, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36006962

ABSTRACT

In condensed matter, phase separation is strongly related to ferroelasticity, ferroelectricity, ferromagnetism, electron correlation, and crystallography. These ferroics are important for nano-electronic devices such as non-volatile memory. However, the quantitative information regarding the lattice (atomic) structure at the border of phase separation is unclear in many cases. Thus, to design electronic devices at the molecular level, a quantitative electron-lattice relationship must be established. Herein, we elucidated a PdII-PdIV/PdIII-PdIII phase transition and phase separation mechanism for [Pd(cptn)2Br]Br2 (cptn = 1R,2R-diaminocyclopentane), propagated through a hydrogen-bonding network. Although the Pd···Pd distance was used to determine the electronic state, the differences in the Pd···Pd distance and the optical gap between Mott-Hubbard (MH) and charge-density-wave (CDW) states were only 0.012 Å and 0.17 eV, respectively. The N-H···Br···H-N hydrogen-bonding network functioned as a jack, adjusting the structural difference dynamically, and allowing visible ferroelastic phase transition/separation in a fluctuating N2 gas flow. Additionally, the effect of the phase separation on the spin susceptibility and electrical conductivity were clarified to represent the quasi-epitaxial crystals among CDW-MH states. These results indicate that the phase transitions and separations could be controlled via atomic and molecular level modifications, such as the addition of hydrogen bonding.

5.
Dalton Trans ; 51(16): 6339-6344, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35383810

ABSTRACT

Encapsulation of a metallofullerene single-molecule magnet, Dy2ScN@C80, into single-wall carbon nanotubes (SWCNTs) accelerates magnetic relaxation processes. In contrast, encapsulation of DySc2N@C80 suppresses them. The effects of the encapsulation are discussed in terms of intermolecular magnetic interactions and charge transfer among metallofullerenes and SWCNTs.


Subject(s)
Nanotubes, Carbon , Magnetic Phenomena , Magnetics , Physical Phenomena
6.
Chem Commun (Camb) ; 58(23): 3763-3766, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35229857

ABSTRACT

We report here a structurally perfect kagomé lattice {[Cu3(bpy)6](SiF6)3(melamine)8}n (1), where bpy is 4,4'-bipyridine and [SiF6]2- is a hexafluorosilicate anion. In comparison to general 1D linear, 2D layered and 3D cubic metal-organic frameworks, by using Cu2+ nodes and bpy ligands, a perfect kagomé lattice was synthesized by introducing C3 symmetrical melamine molecules. Magnetic susceptibility and low-temperature heat capacity measurements indicated weak antiferromagnetic interactions between the spins and no long-range magnetic ordering to 0.7 K. Using C3 symmetrical melamine molecules can be considered as a challenging synthetic strategy to afford new topological materials.

7.
Inorg Chem ; 61(10): 4414-4420, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35234465

ABSTRACT

Guest-promoted modulation of the electronic states in metal-organic frameworks (MOFs) has brought about a new field of interdisciplinary research, including host-guest chemistry and solid-state physics. Although there are dozens of studies on guest-promoted enhancement of the electrical conductivity properties, including stoichiometry, conductive carriers and structure-property relationships have been scarcely studied in detail. Herein, we studied the effects of continuous and controlled bromine vapor doping on structural, optical, thermoelectric, and semiconducting properties of Cu[Cu(pdt)2] (pdt = 2,3-pyrazinedithiolate) as a function of bromine stoichiometry. We demonstrated that the same material could act as both p- and n-type semiconductors by tuning the stoichiometry of Br doped in Brx@Cu[Cu(pdt)2], and a change in the charge-carrier type from holes in pristine MOF to electrons upon bromine vapor doping was observed. Bromine molecules acted as an oxidant, causing the selective oxidation of [CuII(pdt)2] in the host framework. In addition, a redox hopping pathway between the partially oxidized CuII/CuIII center contributed to the enhancement of the electrical conductivity of the MOF.

8.
Dalton Trans ; 50(38): 13368-13373, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34608918

ABSTRACT

Tethering metal complexes, like [Ru(bpy)2Cl2] (bpy = 2,2'-bipyridine), which are redox-active at low reduction potentials and have the ability to transfer electrons to another complex, to a [Ni(cyclen)]2+ electrocatalyst enhanced the reduction of CO2 to CO at low overpotentials. The [Ni(cyclen)]2+ electrocatalyst was modified by tethering redox-active metal complexes via 4-methylpyridyl linkers. The redox-active metal complexes were reduced after CO2 bound to the active site. In controlled potential electrolysis (CPE) experiments in 95 : 5 (v/v) CH3CN/H2O, [{([Ru]pic)4cyclen}NiCl]5+ ([Ru]+ = {Ru(bpy)2Cl}+; pic = 4-methylpyridyl) could be used to reduce CO2 into CO at a turnover frequency (TOF) of 708 s-1 with a faradaic efficiency (FE) of 80% at an onset potential of -1.60 V vs. NHE. At the same time, this electrocatalyst was active at an onset potential of -1.25 V vs. NHE, which is the reduction potential of one of the bpy ligands of the [Ru]+ moieties, with FE = 84% and TOF = 178 s-1. When the electrocatalysis was performed using [bn4cyclenNiCl]Cl (bn = benzyl) without tethered redox-active metal complexes, the TOF value was determined to be 8 s-1 with FE = 77% at an onset potential of -1.45 V vs. NHE. The results show that tethering redox-active metal complexes significantly improves the electrocatalytic activities by lowering the potential needed to reduce CO2.

9.
J Am Chem Soc ; 143(25): 9543-9550, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34156240

ABSTRACT

Cooperation between single-molecule magnets and electrical conductivity holds promise for preparing high-density magnetic devices; however, there are only a few reports so far. Here we report a 4f-π-based molecular hybrid, k-(ET)5Dy(NCS)7(KCl)0.5 (1) (ET = bis(ethylenedithio)tetrathiafulvalene, NCS- = thiocyanate), which undergoes slow relaxation of the magnetization and electrical conductivity. Unlike common ET-based conductive salts, K+ ions were intercalated into ET layers and coordinated with ET radicals. We found that the ET charges were sensitive to temperature, resulting in rich conductive phases at 75-300 K. In particular, the upturn in conductivity with a clear hysteresis loop was explained by the formation of partially oxidized states with charges close to 0.5+, which accounts for a metallic state. From the results of electronic structure calculations, the hole concentration increased to 125 K, which is consistent with a partially oxidized state upon cooling. The weak antiferromagnetic interactions accompanied by a dual magnetic relaxation process below 4 K are closely associated with the weak 4f-π interactions.

10.
Angew Chem Int Ed Engl ; 60(39): 21179-21183, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-33843121

ABSTRACT

A one-dimensional (1D) arrangement of an unsubstituted partially oxidized Dy3+ double-decker complex, [DyPc2 ]Ix (Pc=phthalocyaninato, I=iodide; 1.93

11.
J Am Chem Soc ; 143(13): 4891-4895, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33656871

ABSTRACT

Single-molecule magnets exhibit magnetic bistabililties at the molecular level, making them promising for molecule-based spintronics due to high magnetic densities. The incorporation of SMM behavior and electrical conductivity in one compound is rare because these two physical properties often do not operate in the same temperature range, which further hinders their use in practical applications. Here we present an organic-inorganic molecular hybrid, ß″-(BEDO-TTF)3[Co(pdms)2]·(MeCN)(H2O)2 (BO3) (BEDO-TTF = bis(ethylenedioxy)tetrathiafulvalene and H2pdms = 1,2-bis(methanesulfonamido)benzene), which manifests both metallic conduction (electrical conductivity up to 1000 S cm-1 at 12 K under 2.0 gigapascal pressure) and SMM behavior in the temperature range 12-26 K for the first time.

12.
Dalton Trans ; 50(5): 1614-1619, 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33332512

ABSTRACT

The Pd(iii) oxidation state is unusual and unstable since it strongly tends to disproportionate. We synthesized the quasi-one-dimensional (1D) halogen-bridged Pd(iii)-Cl complex [Pd(dabdOH)2Cl]Cl2 (1-Cl; dabdOH = (2S,3S)-2,3-diaminobutane-1,4-diol) with multiple hydrogen bonds. From single-crystal X-ray diffraction, the bridging Cl- ions were located at the midpoint of the Pd-Cl-Pd moieties in the 1D chains, indicating that the Pd ions are in a Pd(iii) average valence (AV) state. Moreover, bright spots for the Pd(iii) dz2 orbitals in the upper Hubbard band above the Fermi level were observed every ∼5 Šusing scanning tunnelling microscopy. These results clearly indicate that the Pd ions are in a Pd(iii) AV state in 1-Cl. In addition, 1-Cl has the highest thermal stability (470 K) among the Pd(iii) complexes reported and the highest electrical conductivity (0.6 S cm-1 at 300 K) among the 1D Pd-Cl chains reported so far.

13.
Chem Commun (Camb) ; 56(84): 12785-12788, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-32966411

ABSTRACT

Cocrystallization of a lithium ion encapsulated fullerene Li+@C60 with a terbium(iii) phthalocyaninato porphyrinato double-decker single-molecule magnet [Tb(Pc)(OEP)] is reported. The cocrystal, containing PF6- as a counter anion, packs in a quasi-kagome lattice, which leads to intermolecular ferromagnetic interactions as well as the modulation of the single-molecule magnet (SMM) properties.

14.
Chemistry ; 26(39): 8621-8630, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32428358

ABSTRACT

Presented here is a comprehensive study of highly oxidized multiple-decker complexes composed of TbIII and CdII ions and two to five phthalocyaninato ligands, which are stabilized by electron-donating n-butoxy groups. From X-ray structural analyses, all the complexes become axially compressed upon ligand oxidation, resulting in bowl-shaped distortions of the ligands. In addition, unusual coexistence of square antiprism and square prism geometries around metal ions was observed in +4e charged species. From paramagnetic 1 H NMR studies on the resulting series of triple, quadruple and quintuple-decker complexes, ligand oxidation leads to a decrease in the magnetic anisotropy, as predicted from theoretical calculations. Unusual paramagnetic shifts were observed in the spectra of the +2e charged quadruple and quintuple-decker complexes, indicating that those two species are actually unexpected triplet biradicals. Magnetic measurements revealed that the series of complexes show single-molecule magnet properties, which are controlled by the multi-step redox induced structural changes.

15.
Dalton Trans ; 49(14): 4578, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32193524

ABSTRACT

Correction for 'Ionic-caged heterometallic bismuth-platinum complex exhibiting electrocatalytic CO2 reduction' by Takefumi Yoshida et al., Dalton Trans., 2020, 49, 2652-2660.

16.
Chemistry ; 26(36): 8076-8082, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32057140

ABSTRACT

Gd3+ complexes have been shown to undergo unusual slow magnetic relaxation processes similar to those of single-molecule magnets (SMMs), even though Gd3+ does not exhibit strong magnetic anisotropy. To reveal the origin of the slow magnetic relaxation of Gd3+ complexes, we have investigated the magnetic properties and heat capacities of two Gd3+ -phthalocyaninato triple-decker complexes, one of which has intramolecular Gd3+ -Gd3+ interactions and the other does not. It was found that the Gd3+ -Gd3+ interactions accelerate the magnetic relaxation processes. In addition, magnetically diluted samples, prepared by doping a small amount of the Gd3+ complexes into a large amount of diamagnetic Y3+ complexes, underwent dual magnetic relaxation processes. A detailed dynamic magnetic analysis revealed that the coexistence of spin-lattice relaxation and phonon-bottleneck processes is the origin of the dual magnetic relaxation processes.

17.
Dalton Trans ; 49(8): 2652-2660, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-32043108

ABSTRACT

An air-stable heterometallic Bi-Pt complex with the formula [BiPt(SAc)5]n (1; SAc = thioacetate) was synthesized. The crystal structure, natural bond orbital (NBO) and local orbital locator (LOL) analyses, localized orbital bonding analysis (LOBA), and X-ray absorption fine structure (XAFS) measurements were used to confirm the existence of Bi-Pt bonding and an ionic cage of O atoms surrounding the Bi ion. From the cyclic voltammetry (CV) and controlled potential electrolysis (CPE) experiments, 1 in tetrahydrofuran reduced CO2 to CO, with a faradaic efficiency (FE) of 92% and a turnover frequency (TOF) of 8 s-1 after 30 min of CPE at -0.79 V vs. NHE. The proposed mechanism includes an energetically favored pathway via the ionic cage, which is supported by the results of DFT calculations and reflectance infrared spectroelectrochemistry data.

18.
Chemistry ; 26(21): 4805-4815, 2020 Apr 09.
Article in English | MEDLINE | ID: mdl-31984579

ABSTRACT

A supramolecular complex (1⋅C60 ) was prepared by assembling (C60-Ih)[5,6]fullerene (C60 ) with the dinuclear Tb3+ triple-decker complex [(TPP)Tb(Pc)Tb(TPP)] (1: Tb3+ =trivalent terbium ion, Pc2- =phthalocyaninato, TPP2- =tetraphenylporphyrinato) with quasi-D4h symmetry to investigate the relationship between the coordination symmetry and single-molecule magnet (SMM) properties. Tb3+ -Pc triple-decker complexes (Tb2 Pc3 ) have an important advantage over Tb3+ -Pc double-decker complexes (TbPc2 ) since the magnetic relaxation processes correspond to the Zeeman splitting when there are two 4f spin systems. The two Tb3+ sites of 1 are equivalent, and the twist angle (φ) was determined to be 3.62°. On the other hand, the two Tb3+ sites of 1⋅C60 are not equivalent. The φ values for sites Tb1 and Tb2 were determined to be 3.67° and 33.8°, respectively, due to a change in the coordination symmetry of 1 upon association with C60 . At 1.8 K, 1 and 1⋅C60 undergo different magnetic relaxations, and the changes in the ground state affect the spin dynamics. Although 1 and 1⋅C60 relax via QTM in a zero applied magnetic field (H), H dependencies of the magnetic relaxation times (τ) for H>1500 Oe are similar. On the other hand, for H<1500 Oe, the τ values have different behaviors since the off-diagonal terms ( B k q ; q ≠ 0 ) affect the magnetic relaxation mechanism. From temperature (T) and H dependences of τ, spin-phonon interactions along with direct and Raman mechanisms explain the spin dynamics. We believe that a supramolecular method can be used to control the magnetic anisotropy along the C4 rotation axis and the spin dynamic properties in dinuclear Ln3+ -Pc multiple-decker complexes.

19.
Chem Sci ; 11(41): 11154-11161, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-34094356

ABSTRACT

Single-molecule magnets (SMMs) show superparamagnetic behaviour below blocking temperature at the molecular scale, so they exhibit large magnetic density compared to the conventional magnets. Combining SMMs and molecular conductors in one compound will bring about new physical phenomena, however, the synergetic effects between them still remain unexplored. Here we present a layered molecule-based compound, ß''-(BEDO-TTF)4 [Co(pdms)2]·3H2O (BO4), (BEDO-TTF (BO) and H2pdms are bis(ethylenedioxy)tetrathiafulvalene and 1,2-bis(methanesulfonamido)benzene, respectively), which was synthesized by using an electrochemical approach and studied by using crystal X-ray diffraction. This compound simultaneously exhibited metallic conductivity and SMM behaviour up to 11 K for the first time. The highest electrical conductivity was 400-650 S cm-1 at 6.5 K, which is the highest among those reported so far for conducting SMM materials. Furthermore, antiferromagnetic ordering occurred below 6.5 K, along with a decrease in conductivity, and the angle-independent negative magnetoresistance suggested an effective electron correlation between the conducting BO and Co(pdms)2 SMM layers (d-π interactions). The strong magnetic anisotropy and two-dimensional conducting plane play key roles in the low-temperature antiferromagnetic semiconducting state. BO4 is the first compound exhibiting antiferromagnetic ordering among SMMs mediated by π-electrons, demonstrating the synergetic effects between SMMs and molecular conductors.

20.
Angew Chem Int Ed Engl ; 59(6): 2399-2406, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-31782883

ABSTRACT

The first three-dimensional (3D) conductive single-ion magnet (SIM), (TTF)2 [Co(pdms)2 ] (TTF=tetrathiafulvalene and H2 pdms=1,2-bis(methanesulfonamido)benzene), was electrochemically synthesised and investigated structurally, physically, and theoretically. The similar oxidation potentials of neutral TTF and the molecular precursor [HNEt3 ]2 [M(pdms)2 ] (M=Co, Zn) allow for multiple charge transfers (CTs) between the SIM donor [M(pdms)2 ]n- and the TTF.+ acceptor, as well as an intradonor CT from the pdms ligand to Co ion upon electrocrystallisation. Usually TTF functions as a donor, whereas in our system TTF is both a donor and an accepter because of the similar oxidation potentials. Furthermore, the [M(pdms)2 ]n- donor and TTF.+ acceptor are not segregated but strongly interact with each other, contrary to reported layered donor-acceptor electrical conductors. The strong intermolecular and intramolecular interactions, combined with CT, allow for relatively high electrical conductivity even down to very low temperatures. Furthermore, SIM behaviour with slow magnetic relaxation and opening of hysteresis loops was observed. (TTF)2 [Co(pdms)2 ] (2-Co) is an excellent building block for preparing new conductive SIMs.

SELECTION OF CITATIONS
SEARCH DETAIL
...