Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Plant Methods ; 20(1): 95, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898527

ABSTRACT

BACKGROUND: Lentil (Lens culinaris Medik.) is a globally-significant agricultural crop used to feed millions of people. Lentils have been cultivated in the Australian states of Victoria and South Australia for several decades, but efforts are now being made to expand their cultivation into Western Australia and New South Wales. Plant architecture plays a pivotal role in adaptation, leading to improved and stable yields especially in new expansion regions. Image-based high-throughput phenomics technologies provide opportunities for an improved understanding of plant development, architecture, and trait genetics. This paper describes a novel method for mapping and quantifying individual branch structures on immature glasshouse-grown lentil plants grown using a LemnaTec Scanalyser 3D high-throughput phenomics platform, which collected side-view RGB images at regular intervals under controlled photographic conditions throughout the experiment. A queue and distance-based algorithm that analysed morphological skeletons generated from images of lentil plants was developed in Python. This code was incorporated into an image analysis pipeline using open-source software (PlantCV) to measure the number, angle, and length of individual branches on lentil plants. RESULTS: Branching structures could be accurately identified and quantified in immature plants, which is sufficient for calculating early vigour traits, however the accuracy declined as the plants matured. Absolute accuracy for branch counts was 77.9% for plants at 22 days after sowing (DAS), 57.9% at 29 DAS and 51.9% at 36 DAS. Allowing for an error of ± 1 branch, the associated accuracies for the same time periods were 97.6%, 90.8% and 79.2% respectively. Occlusion in more mature plants made the mapping of branches less accurate, but the information collected could still be useful for trait estimation. For branch length calculations, the amount of variance explained by linear mixed-effects models was 82% for geodesic length and 87% for Euclidean branch lengths. Within these models, both the mean geodesic and Euclidean distance measurements of branches were found to be significantly affected by genotype, DAS and their interaction. Two informative metrices were derived from the calculations of branch angle; 'splay' is a measure of how far a branch angle deviates from being fully upright whilst 'angle-difference' is the difference between the smallest and largest recorded branch angle on each plant. The amount of variance explained by linear mixed-effects models was 38% for splay and 50% for angle difference. These lower R2 values are likely due to the inherent difficulties in measuring these parameters, nevertheless both splay and angle difference were found to be significantly affected by cultivar, DAS and their interaction. When 276 diverse lentil genotypes with varying degrees of salt tolerance were grown in a glasshouse-based experiment where a portion were subjected to a salt treatment, the branching algorithm was able to distinguish between salt-treated and untreated lentil lines based on differences in branch counts. Likewise, the mean geodesic and Euclidean distance measurements of branches were both found to be significantly affected by cultivar, DAS and salt treatment. The amount of variance explained by the linear mixed-effects models was 57.8% for geodesic branch length and 46.5% for Euclidean branch length. CONCLUSION: The methodology enabled the accurate quantification of the number, angle, and length of individual branches on glasshouse-grown lentil plants. This methodology could be applied to other dicotyledonous species.

2.
Cell Genom ; 3(10): 100385, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37868035

ABSTRACT

Many quantitative trait loci (QTLs) are in non-coding regions. Therefore, QTLs are assumed to affect gene regulation. Gene expression and RNA splicing are primary steps of transcription, so DNA variants changing gene expression (eVariants) or RNA splicing (sVariants) are expected to significantly affect phenotypes. We quantify the contribution of eVariants and sVariants detected from 16 tissues (n = 4,725) to 37 traits of ∼120,000 cattle (average magnitude of genetic correlation between traits = 0.13). Analyzed in Bayesian mixture models, averaged across 37 traits, cis and trans eVariants and sVariants detected from 16 tissues jointly explain 69.2% (SE = 0.5%) of heritability, 44% more than expected from the same number of random variants. This 69.2% includes an average of 24% from trans e-/sVariants (14% more than expected). Averaged across 56 lipidomic traits, multi-tissue cis and trans e-/sVariants also explain 71.5% (SE = 0.3%) of heritability, demonstrating the essential role of proximal and distal regulatory variants in shaping mammalian phenotypes.

3.
Commun Biol ; 5(1): 661, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35790806

ABSTRACT

Bayesian methods, such as BayesR, for predicting the genetic value or risk of individuals from their genotypes, such as Single Nucleotide Polymorphisms (SNP), are often implemented using a Markov Chain Monte Carlo (MCMC) process. However, the generation of Markov chains is computationally slow. We introduce a form of blocked Gibbs sampling for estimating SNP effects from Markov chains that greatly reduces computational time by sampling each SNP effect iteratively n-times from conditional block posteriors. Subsequent iteration over all blocks m-times produces chains of length m × n. We use this strategy to solve large-scale genomic prediction and fine-mapping problems using the Bayesian MCMC mixed-effects genetic model, BayesR3. We validate the method using simulated data, followed by analysis of empirical dairy cattle data using high dimension milk mid infra-red spectra data as an example of "omics" data and show its use to increase the precision of mapping variants affecting milk, fat, and protein yields relative to a univariate analysis of milk, fat, and protein.


Subject(s)
Genome , Genomics , Animals , Bayes Theorem , Cattle , Genomics/methods , Markov Chains , Phenotype
4.
Front Plant Sci ; 13: 858519, 2022.
Article in English | MEDLINE | ID: mdl-35519806

ABSTRACT

In recent decades with the reacknowledgment of the medicinal properties of Cannabis sativa L. (cannabis) plants, there is an increased demand for high performing cultivars that can deliver quality products for various applications. However, scientific knowledge that can facilitate the generation of advanced cannabis cultivars is scarce. In order to improve cannabis breeding and optimize cultivation techniques, the current study aimed to examine the morphological attributes of cannabis inflorescences using novel image analysis practices. The investigated plant population comprises 478 plants ascribed to 119 genotypes of high-THC or blended THC-CBD ratio that was cultivated under a controlled environment facility. Following harvest, all plants were manually processed and an image of the trimmed and refined inflorescences extracted from each plant was captured. Image analysis was then performed using in-house custom-made software which extracted 8 morphological features (such as size, shape and perimeter) for each of the 127,000 extracted inflorescences. Our findings suggest that environmental factors play an important role in the determination of inflorescences' morphology. Therefore, further studies that focus on genotype X environment interactions are required in order to generate inflorescences with desired characteristics. An examination of the intra-plant inflorescences weight distribution revealed that processing 75% of the plant's largest inflorescences will gain 90% of its overall yield weight. Therefore, for the optimization of post-harvest tasks, it is suggested to evaluate if the benefits from extracting and processing the plant's smaller inflorescences outweigh its operational costs. To advance selection efficacy for breeding purposes, a prediction equation for forecasting the plant's production biomass through width measurements of specific inflorescences, formed under the current experimental methodology, was generated. Thus, it is anticipated that findings from the current study will contribute to the field of medicinal cannabis by improving targeted breeding programs, advancing crop productivity and enhancing the efficacy of post-harvest procedures.

5.
Mol Breed ; 42(4): 24, 2022 Apr.
Article in English | MEDLINE | ID: mdl-37309464

ABSTRACT

Genome-wide association studies were conducted using a globally diverse safflower (Carthamus tinctorius L.) Genebank collection for grain yield (YP), days to flowering (DF), plant height (PH), 500 seed weight (SW), seed oil content (OL), and crude protein content (PR) in four environments (sites) that differed in water availability. Phenotypic variation was observed for all traits. YP exhibited low overall genetic correlations (rGoverall) across sites, while SW and OL had high rGoverall and high pairwise genetic correlations (rGij) across all pairwise sites. In total, 92 marker-trait associations (MTAs) were identified using three methods, single locus genome-wide association studies (GWAS) using a mixed linear model (MLM), the Bayesian multi-locus method (BayesR), and meta-GWAS. MTAs with large effects across all sites were detected for OL, SW, and PR, and MTAs specific for the different water stress sites were identified for all traits. Five MTAs were associated with multiple traits; 4 of 5 MTAs were variously associated with the three traits of SW, OL, and PR. This study provided insights into the phenotypic variability and genetic architecture of important safflower agronomic traits under different environments. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01295-8.

7.
Clin Cancer Res ; 25(5): 1557-1563, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30409824

ABSTRACT

PURPOSE: Combination PD-1 and CTLA-4 inhibitor therapy has dramatically improved the survival of patients with advanced melanoma but is also associated with significant immune-related toxicities. This study sought to identify circulating cytokine biomarkers of treatment response and immune-related toxicity. EXPERIMENTAL DESIGN: The expression of 65 cytokines was profiled longitudinally in 98 patients with melanoma treated with PD-1 inhibitors, alone or in combination with anti-CTLA-4, and in an independent validation cohort of 49 patients treated with combination anti-PD-1 and anti-CTLA-4. Cytokine expression was correlated with RECIST response and immune-related toxicity, defined as toxicity that warranted permanent discontinuation of treatment and administration of high-dose steroids. RESULTS: Eleven cytokines were significantly upregulated in patients with severe immune-related toxicities at baseline (PRE) and early during treatment (EDT). The expression of these 11 cytokines was integrated into a single toxicity score, the CYTOX (cytokine toxicity) score, and the predictive utility of this score was confirmed in the discovery and validation cohorts. The AUC for the CYTOX score in the validation cohort was 0.68 at PRE [95% confidence interval (CI), 0.51-0.84; P = 0.037] and 0.70 at EDT (95% CI, 0.55-0.85; P = 0.017) using ROC analysis. CONCLUSIONS: The CYTOX score is predictive of severe immune-related toxicity in patients with melanoma treated with combination anti-CTLA-4 and anti-PD-1 immunotherapy. This score, which includes proinflammatory cytokines such as IL1a, IL2, and IFNα2, may help in the early management of severe, potentially life-threatening immune-related toxicity.See related commentary by Johnson and Balko, p. 1452.


Subject(s)
Antineoplastic Agents, Immunological/adverse effects , Cytokines/blood , Drug-Related Side Effects and Adverse Reactions/etiology , Melanoma/blood , Melanoma/complications , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor , Combined Modality Therapy , Female , Follow-Up Studies , Humans , Immunomodulation/drug effects , Male , Melanoma/diagnosis , Melanoma/drug therapy , Middle Aged , Neoplasm Staging , ROC Curve
8.
Mol Autism ; 8: 63, 2017.
Article in English | MEDLINE | ID: mdl-29214007

ABSTRACT

Background: Autism spectrum disorders (ASDs) are complex, pervasive, and heterogeneous neurodevelopmental conditions with varying trajectories, significant male bias and largely unknown etiology. However, an understanding of the biological mechanisms driving pathophysiology is evolving. Immune system aberrations, as identified through cytokine profiles, are believed to have a role in ASD. Altered cytokine levels may facilitate identification of ASD subtypes as well as provide biological markers of response to effective treatments. Research exploring the relationship between cytokine profiles and ASD symptoms is, however, in its infancy. The objective of this study was to explore relationships between cytokine levels and the severity of ASD and other clinical traits. Methods: Multiplex assay techniques were used to measure levels of 27 cytokines in plasma samples from a cohort of 144 children diagnosed with ASD. Results: Overall, results showed a significant negative association between platelet-derived growth factor (PDGF)-BB, and the severity of ASD symptoms. Furthermore, a significant interaction with sex suggested a different immune profile for females compared to males. ASD symptom severity was negatively associated with levels of 4 cytokines, IL-1ß, IL-8, MIP-1ß, and VEGF, in females, but not in males. Conclusions: Results of the present study suggest that an altered cytokine response or profile is associated with the severity of ASD-related symptoms, with sex a potential modifier of this relationship. Further research in larger populations which recognizes the importance of sex comparisons and longitudinal assessments are now required to extend and further describe the role of the immune system in ASD.


Subject(s)
Autism Spectrum Disorder/diagnosis , Cytokines/blood , Adolescent , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/pathology , Becaplermin , Behavior/physiology , Child , Child, Preschool , Female , Humans , Male , Proto-Oncogene Proteins c-sis/blood , Severity of Illness Index , Sex Factors , Surveys and Questionnaires
9.
Methods Mol Biol ; 1619: 495-537, 2017.
Article in English | MEDLINE | ID: mdl-28674907

ABSTRACT

Plasma samples from 177 control and type 2 diabetes patients collected at three Australian hospitals are screened for 14 analytes using six custom-made multiplex kits across 60 96-well plates. In total 354 samples were collected from the patients, representing one baseline and one end point sample from each patient. R methods and source code for analyzing the analyte fluorescence response obtained from these samples by Luminex Bio-Plex® xMap multiplexed immunoassay technology are disclosed. Techniques and R procedures for reading Bio-Plex® result files for statistical analysis and data visualization are also presented. The need for technical replicates and the number of technical replicates are addressed as well as plate layout design strategies. Multinomial regression is used to determine plate to sample covariate balance. Methods for matching clinical covariate information to Bio-Plex® results and vice versa are given. As well as methods for measuring and inspecting the quality of the fluorescence responses are presented. Both fixed and mixed-effect approaches for immunoassay statistical differential analysis are presented and discussed. A random effect approach to outlier analysis and detection is also shown. The bioinformatics R methodology present here provides a foundation for rigorous and reproducible analysis of the fluorescence response obtained from multiplexed immunoassays.


Subject(s)
Computational Biology/methods , Immunoassay , Programming Languages , Proteome , Proteomics , Software , Blood Proteins , Humans , Immunoassay/methods , Proteomics/methods , Reagent Kits, Diagnostic , Statistics as Topic
10.
Sci Rep ; 6: 26996, 2016 05 31.
Article in English | MEDLINE | ID: mdl-27243383

ABSTRACT

Tissue samples (plasma, saliva, serum or urine) from 169 patients classified as either normal or having one of seven possible diseases are analysed across three 96-well plates for the presences of 37 analytes using cytokine inflammation multiplexed immunoassay panels. Censoring for concentration data caused problems for analysis of the low abundant analytes. Using fluorescence analysis over concentration based analysis allowed analysis of these low abundant analytes. Mixed-effects analysis on the resulting fluorescence and concentration responses reveals a combination of censoring and mapping the fluorescence responses to concentration values, through a 5PL curve, changed observed analyte concentrations. Simulation verifies this, by showing a dependence on the mean florescence response and its distribution on the observed analyte concentration levels. Differences from normality, in the fluorescence responses, can lead to differences in concentration estimates and unreliable probabilities for treatment effects. It is seen that when fluorescence responses are normally distributed, probabilities of treatment effects for fluorescence based t-tests has greater statistical power than the same probabilities from concentration based t-tests. We add evidence that the fluorescence response, unlike concentration values, doesn't require censoring and we show with respect to differential analysis on the fluorescence responses that background correction is not required.


Subject(s)
Cytokines/blood , Immunoenzyme Techniques/standards , Spectrometry, Fluorescence/standards , Analysis of Variance , Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/diagnosis , Arthritis, Rheumatoid/immunology , Case-Control Studies , Cytokines/immunology , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/immunology , Humans , Infectious Mononucleosis/blood , Infectious Mononucleosis/diagnosis , Infectious Mononucleosis/immunology , Multiple Myeloma/blood , Multiple Myeloma/diagnosis , Multiple Myeloma/immunology , Psoriasis/blood , Psoriasis/diagnosis , Psoriasis/immunology , Pulmonary Disease, Chronic Obstructive/blood , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/immunology , Reagent Kits, Diagnostic/standards , Sepsis/blood , Sepsis/diagnosis , Sepsis/immunology
11.
Stem Cells Int ; 2016: 9364213, 2016.
Article in English | MEDLINE | ID: mdl-26981136

ABSTRACT

Background. Biological therapeutics such as adipose-derived mesenchymal stem cell (MSC) therapy are gaining acceptance for knee-osteoarthritis (OA) treatment. Reports of OA-patients show reductions in cartilage defects and regeneration of hyaline-like-cartilage with MSC-therapy. Suspending MSCs in hyaluronan commonly occurs in animals and humans, usually without supporting data. Objective. To elucidate the effects of different concentrations of hyaluronan on MSC growth kinetics. Methods. Using a range of hyaluronan concentrations, we measured MSC adherence and proliferation on culture plastic surfaces and a novel cartilage-adhesion assay. We employed time-course and dispersion imaging to assess MSC binding to cartilage. Cytokine profiling was also conducted on the MSC-secretome. Results. Hyaluronan had dose-dependent effects on growth kinetics of MSCs at concentrations of entanglement point (1 mg/mL). At higher concentrations, viscosity effects outweighed benefits of additional hyaluronan. The cartilage-adhesion assay highlighted for the first time that hyaluronan-primed MSCs increased cell attachment to cartilage whilst the presence of hyaluronan did not. Our time-course suggested patients undergoing MSC-therapy for OA could benefit from joint-immobilisation for up to 8 hours. Hyaluronan also greatly affected dispersion of MSCs on cartilage. Conclusion. Our results should be considered in future trials with MSC-therapy using hyaluronan as a vehicle, for the treatment of OA.

12.
Stem Cells Int ; 2015: 421253, 2015.
Article in English | MEDLINE | ID: mdl-26257790

ABSTRACT

Osteoarthritis (OA) can be a debilitating degenerative disease and is the most common form of arthritic disease. There is a general consensus that current nonsurgical therapies are insufficient for younger OA sufferers who are not candidates for knee arthroplasties. Adipose-derived mesenchymal stem cells (MSCs) therapy for the treatment of OA can slow disease progression and lead to neocartilage formation. The mechanism of action is secretion driven. Current clinical preparations from adipose tissue for the treatment of OA include autologous stromal vascular fraction (SVF), SVF plus mature adipocytes, and culture-purified MSCs. Herein we have combined these human adipose-derived preparations with Hyaluronan (Hylan G-F 20: Synvisc) in vitro and measured alterations in cytokine profile. SVF plus mature adipocytes showed the greatest decreased in the proinflammatory cytokines IL-1ß, IFN-γ, and VEGF. MCP-1 and MIP-1α decreased substantially in the SVF preparations but not the purified MSCs. The purified MSC preparation was the only one to show increase in MIF. Overall the SVF plus mature adipocytes preparation may be most suited of all the preparations for combination with HA for the treatment of OA, based on the alterations of heavily implicated cytokines in OA disease progression. This will require further validation using in vivo models.

13.
Protein Sci ; 24(9): 1486-94, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26131659

ABSTRACT

Protein-protein interaction (PPI) establishes the central basis for complex cellular networks in a biological cell. Association of proteins with other proteins occurs at varying affinities, yet with a high degree of specificity. PPIs lead to diverse functionality such as catalysis, regulation, signaling, immunity, and inhibition, playing a crucial role in functional genomics. The molecular principle of such interactions is often elusive in nature. Therefore, a comprehensive analysis of known protein complexes from the Protein Data Bank (PDB) is essential for the characterization of structural interface features to determine structure-function relationship. Thus, we analyzed a nonredundant dataset of 278 heterodimer protein complexes, categorized into major functional classes, for distinguishing features. Interestingly, our analysis has identified five key features (interface area, interface polar residue abundance, hydrogen bonds, solvation free energy gain from interface formation, and binding energy) that are discriminatory among the functional classes using Kruskal-Wallis rank sum test. Significant correlations between these PPI interface features amongst functional categories are also documented. Salt bridges correlate with interface area in regulator-inhibitors (r = 0.75). These representative features have implications for the prediction of potential function of novel protein complexes. The results provide molecular insights for better understanding of PPIs and their relation to biological functions.


Subject(s)
Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Protein Interaction Mapping/methods , Computational Biology/methods , Databases, Protein , Dimerization , Humans , Protein Conformation , Protein Interaction Maps/physiology , Structure-Activity Relationship
14.
Clin Proteomics ; 12(1): 10, 2015.
Article in English | MEDLINE | ID: mdl-25987887

ABSTRACT

BACKGROUND: Current methods widely deployed for colorectal cancers (CRC) screening lack the necessary sensitivity and specificity required for population-based early disease detection. Cancer-specific protein biomarkers are thought to be produced either by the tumor itself or other tissues in response to the presence of cancers or associated conditions. Equally, known examples of cancer protein biomarkers (e.g., PSA, CA125, CA19-9, CEA, AFP) are frequently found in plasma at very low concentration (pg/mL-ng/mL). New sensitive and specific assays are therefore urgently required to detect the disease at an early stage when prognosis is good following surgical resection. This study was designed to meet the longstanding unmet clinical need for earlier CRC detection by measuring plasma candidate biomarkers of cancer onset and progression in a clinical stage-specific manner. EDTA plasma samples (1 µL) obtained from 75 patients with Dukes' staged CRC or unaffected controls (age and sex matched with stringent inclusion/exclusion criteria) were assayed for expression of 92 human proteins employing the Proseek® Multiplex Oncology I proximity extension assay. An identical set of plasma samples were analyzed utilizing the Bio-Plex Pro™ human cytokine 27-plex immunoassay. RESULTS: Similar quantitative expression patterns for 13 plasma antigens common to both platforms endorsed the potential efficacy of Proseek as an immune-based multiplex assay for proteomic biomarker research. Proseek found that expression of Carcinoembryonic Antigen (CEA), IL-8 and prolactin are significantly correlated with CRC stage. CONCLUSIONS: CEA, IL-8 and prolactin expression were found to identify between control (unaffected), non-malignant (Dukes' A + B) and malignant (Dukes' C + D) stages.

15.
Cytokine ; 71(2): 188-98, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25461398

ABSTRACT

Within the scientific literature, analyses of data from bead based multiplex immunoassays are based on either median fluorescence intensities (MFI) or derived absolute concentration values (ACV) but no consideration of which set of data is the most appropriate for analysis has been published. Here we look at the variance of MFI versus their ACV from the expression of 14 analytes in plasma, using 6 commercially available kits, across 177 patients, recorded at two time points and the associated analyte standards. In total 60 micro titre plates were used resulting in 4965 MFI. In doing so we develop a new background subtraction procedure that reduced by 50% the number of out-of-range values observed in our data set. Using a linear mixed-effect model, which normalizes for assay-to-assay variation, MFI produced similar significant differences than that observed using absolute concentration values. We show that subtracting analyte blanks produces 15% negative MFI resulting in uncertainty of the data being analysed. We argue for analysis of protein expression values MFI are generally a better choice than absolute concentration values. It is argued that analyte standards are not required on each plate, or not at all, in multi-plate experiments, but knowledge of the concentration curve and the range of MFI values that fall within the limits of this curve for each analyte is required. The significance of using MFI over concentration values for the life scientist means higher statistical power and lower costs.


Subject(s)
Chemokines/blood , Cytokines/blood , Immunoassay/methods , Intercellular Signaling Peptides and Proteins/blood , Algorithms , Blood Chemical Analysis/instrumentation , Blood Chemical Analysis/methods , Fluorescence , Humans , Immunoassay/instrumentation , Reagent Kits, Diagnostic , Reproducibility of Results
16.
BMC Syst Biol ; 7: 12, 2013 Feb 06.
Article in English | MEDLINE | ID: mdl-23383610

ABSTRACT

BACKGROUND: Cancer is a complex disease where molecular mechanism remains elusive. A systems approach is needed to integrate diverse biological information for the prognosis and therapy risk assessment using mechanistic approach to understand gene interactions in pathways and networks and functional attributes to unravel the biological behaviour of tumors. RESULTS: We weighted the functional attributes based on various functional properties observed between cancerous and non-cancerous genes reported from literature. This weighing schema was then encoded in a Boolean logic framework to rank differentially expressed genes. We have identified 17 genes to be differentially expressed from a total of 11,173 genes, where ten genes are reported to be down-regulated via epigenetic inactivation and seven genes are up-regulated. Here, we report that the overexpressed genes IRAK1, CHEK1 and BUB1 may play an important role in ovarian cancer. We also show that these 17 genes can be used to form an ovarian cancer signature, to distinguish normal from ovarian cancer subjects and that the set of three genes, CHEK1, AR, and LYN, can be used to classify good and poor prognostic tumors. CONCLUSION: We provided a workflow using a Boolean logic schema for the identification of differentially expressed genes by integrating diverse biological information. This integrated approach resulted in the identification of genes as potential biomarkers in ovarian cancer.


Subject(s)
Gene Expression Regulation, Neoplastic/genetics , Gene Regulatory Networks/genetics , Genes, Neoplasm/genetics , Genetic Association Studies/methods , Genetic Markers/genetics , Ovarian Neoplasms/genetics , Signal Transduction/genetics , Checkpoint Kinase 1 , Databases, Genetic , Female , Humans , Interleukin-1 Receptor-Associated Kinases/genetics , Kaplan-Meier Estimate , Models, Genetic , Ovarian Neoplasms/physiopathology , Protein Kinases/genetics , Protein Serine-Threonine Kinases/genetics , Systems Biology/methods
17.
J Transl Med ; 10: 172, 2012 Aug 22.
Article in English | MEDLINE | ID: mdl-22913454

ABSTRACT

BACKGROUND: Adipose tissue is an attractive source of cells for therapeutic purposes because of the ease of harvest and the high frequency of mesenchymal stem cells (MSCs). Whilst it is clear that MSCs have significant therapeutic potential via their ability to secrete immuno-modulatory and trophic cytokines, the therapeutic use of mixed cell populations from the adipose stromal vascular fraction (SVF) is becoming increasingly common. METHODS: In this study we have measured a panel of 27 cytokines and growth factors secreted by various combinations of human adipose-derived cell populations. These were 1. co-culture of freshly isolated SVF with adipocytes, 2. freshly isolated SVF cultured alone, 3. freshly isolated adipocytes alone and 4. adherent adipose-derived mesenchymal stem cells (ADSCs) at passage 2. In addition, we produced an 'in silico' dataset by combining the individual secretion profiles obtained from culturing the SVF with that of the adipocytes. This was compared to the secretion profile of co-cultured SVF and adipocytes. Two-tailed t-tests were performed on the secretion profiles obtained from the SVF, adipocytes, ADSCs and the 'in silico' dataset and compared to the secretion profiles obtained from the co-culture of the SVF with adipocytes. A p-value of < 0.05 was considered statistically different. To assess the overall changes that may occur as a result of co-culture we compared the proteomes of SVF and SVF co-cultured with adipocytes using iTRAQ quantitative mass spectrometry. RESULTS: A co-culture of SVF and adipocytes results in a distinct secretion profile when compared to all other adipose-derived cell populations studied. This illustrates that cellular crosstalk during co-culture of the SVF with adipocytes modulates the production of cytokines by one or more cell types. No biologically relevant differences were detected in the proteomes of SVF cultured alone or co-cultured with adipocytes. CONCLUSIONS: The use of mixed adipose cell populations does not appear to induce cellular stress and results in enhanced secretion profiles. Given the importance of secreted cytokines in cell therapy, the use of a mixed cell population such as the SVF with adipocytes may be considered as an alternative to MSCs or fresh SVF alone.


Subject(s)
Adipose Tissue/metabolism , Adipose Tissue/cytology , Cell Differentiation , Coculture Techniques , Cytokines/metabolism , Humans , Intercellular Signaling Peptides and Proteins/metabolism
18.
Mol Cell Proteomics ; 1(7): 490-9, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12239277

ABSTRACT

We describe a chemical printer that uses piezoelectric pulsing for rapid, accurate, and non-contact microdispensing of fluid for proteomic analysis of immobilized protein macroarrays. We demonstrate protein digestion and peptide mass fingerprinting analysis of human plasma and platelet proteins direct from a membrane surface subsequent to defined microdispensing of trypsin and matrix solutions, hence bypassing multiple liquid-handling steps. Detection of low abundance, alkaline proteins from whole human platelet extracts has been highlighted. Membrane immobilization of protein permits archiving of samples pre-/post-analysis and provides a means for subanalysis using multiple chemistries. This study highlights the ability to increase sequence coverage for protein identification using multiple enzymes and to characterize N-glycosylation modifications using a combination of PNGase F and trypsin. We also demonstrate microdispensing of multiple serum samples in a quantitative microenzyme-linked immunosorbent assay format to rapidly screen protein macroarrays for pathogen-derived antigens. We anticipate the chemical printer will be a major component of proteomic platforms for high throughput protein identification and characterization with widespread applications in biomedical and diagnostic discovery.


Subject(s)
Peptide Mapping/instrumentation , Peptide Mapping/methods , Proteome/analysis , Proteomics , Amino Acid Sequence , Blood Platelets/chemistry , Electrochemistry , Humans , Immunoglobulins/chemistry , Immunoglobulins/metabolism , Molecular Sequence Data , Proteomics/instrumentation , Proteomics/methods , Trypsin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...