Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Sci Transl Med ; 15(681): eabq5241, 2023 02.
Article in English | MEDLINE | ID: mdl-36724238

ABSTRACT

In October 2019, Novartis launched brolucizumab, a single-chain variable fragment molecule targeting vascular endothelial growth factor A, for the treatment of neovascular age-related macular degeneration. In 2020, rare cases of retinal vasculitis and/or retinal vascular occlusion (RV/RO) were reported, often during the first few months after treatment initiation, consistent with a possible immunologic pathobiology. This finding was inconsistent with preclinical studies in cynomolgus monkeys that demonstrated no drug-related intraocular inflammation, or RV/RO, despite the presence of preexisting and treatment-emergent antidrug antibodies (ADAs) in some animals. In this study, the immune response against brolucizumab in humans was assessed using samples from clinical trials and clinical practice. In the brolucizumab-naïve population, anti-brolucizumab ADA responses were detected before any treatment, which was supported by the finding that healthy donors can harbor brolucizumab-specific B cells. This suggested prior exposure of the immune system to proteins with structural similarity. Experiments on samples showed that naïve and brolucizumab-treated ADA-positive patients developed a class-switched, high-affinity immune response, with several linear epitopes being recognized by ADAs. Only patients with RV/RO showed a meaningful T cell response upon recall with brolucizumab. Further studies in cynomolgus monkeys preimmunized against brolucizumab with adjuvant followed by intravitreal brolucizumab challenge demonstrated that high ADA titers were required to generate ocular inflammation and vasculitis/vascular thrombosis, comparable to RV/RO in humans. Immunogenicity therefore seems to be a prerequisite to develop RV/RO. However, because only 2.1% of patients with ADA develop RV/RO, additional factors must play a role in the development of RV/RO.


Subject(s)
Retinal Vasculitis , Animals , Humans , Adjuvants, Immunologic , Angiogenesis Inhibitors , Inflammation , Intravitreal Injections , Macaca fascicularis , Vascular Endothelial Growth Factor A
2.
Clin Transl Sci ; 16(5): 723-741, 2023 05.
Article in English | MEDLINE | ID: mdl-36651217

ABSTRACT

The eye, which is under constant exposure to environmental pathogens, has evolved various anatomic and immunological barriers critical to the protection of tissues lacking regenerative capacity, and the maintenance of a clear optic pathway essential to vision. By bypassing the ocular barriers, intravitreal (IVT) injection has become the mainstay for the delivery of drugs to treat conditions that affect the back of the eye. Both small molecules and biotherapeutics have been successfully administered intravitreally, and several drugs have been approved for the treatment of (wet) age-related macular degeneration and diabetic macular edema. However, IVT injection is an invasive procedure, which requires sufficient technical expertise from the healthcare professional administering the drug. Potential side effects include bleeding, retinal tear, cataracts, infection, uveitis, loss of vision, and increased ocular pressure. Pharmaceutical companies often differ in their drug development plan, including drug administration techniques, collection of ocular tissues and fluids, ophthalmology monitoring, and overall conduct of nonclinical and clinical studies. The present effort, under the aegis of the Innovation & Quality Ophthalmic Working Group, aims at understanding these differences, identifying pros and cons of the various approaches, determining the gaps in knowledge, and suggesting feasible good practices for nonclinical and early clinical IVT drug development.


Subject(s)
Diabetic Retinopathy , Macular Edema , Humans , Macular Edema/drug therapy , Diabetic Retinopathy/drug therapy , Pharmaceutical Preparations , Intravitreal Injections
3.
Toxicol Pathol ; 45(8): 1055-1066, 2017 12.
Article in English | MEDLINE | ID: mdl-29233079

ABSTRACT

To test the diagnostic approach described in part 1 of this article, 2 exercises were completed by pathologists from multiple companies/agencies. Pathologist's examination of whole slide image (WSI) heart sections from rats using personal diagnostic approaches (exercise #1) corroborated conclusions from study #1. Using the diagnostic approach described in part 1, these pathologists examined the same WSI heart sections (exercise #2) to determine whether that approach increased consistency of diagnosis of rodent progressive cardiomyopathy (PCM) lesions. In exercise #2, there was improved consistency of categorization of small borderline morphologies and mild lesions, but a decrement in consistency of categorizing minimal lesions. Exercises 1 and 2 suggest the described diagnostic approach is representative of that in use by the majority of toxicologic pathologists across companies/agencies and that application by all may improve diagnostic consistency of PCM/like lesions. Additionally, a criterion of approximately 5% heart section involvement is suggested for separating mild from moderate or greater severity. While evidence is not absolute, until further investigation shows otherwise, microscopic changes resembling PCM, but located in the epicardial and subepicardial region of the right ventricle, may be considered as part of the spectrum of PCM.


Subject(s)
Cardiomyopathies/pathology , Diagnostic Imaging/methods , Heart Ventricles/pathology , Rats, Sprague-Dawley , Rodent Diseases/pathology , Toxicity Tests/methods , Animals , Cardiomyopathies/veterinary , Cardiotoxicity/pathology , Cardiotoxicity/veterinary , Computer Simulation , Diagnostic Imaging/standards , Diagnostic Imaging/veterinary , Disease Progression , Male , Toxicity Tests/veterinary
4.
Toxicol Pathol ; 45(8): 1043-1054, 2017 12.
Article in English | MEDLINE | ID: mdl-29173114

ABSTRACT

Spontaneous rodent progressive cardiomyopathy (PCM) in the Sprague Dawley rat may confound identification and/or interpretation of potential test article (TA)-related cardiotoxicity. Pathologists apply diagnostic term(s) and thresholds for diagnosing and assigning severity grades for PCM and/or PCM-like (PCM/like) lesions consistently within a study, which is necessary to identify and interpret TA-related findings. Due to differences in training and/or experiences, diagnostic terms and thresholds may vary between pathologists. Harmonized terminology and thresholds across studies will generate better historical control data, will likely enhance interpretation of study data, and may further enhance our understanding of the spontaneous change. An assessment of the diagnostic approaches of a group of 37 pathologists identified an approach that is relatively easily applied; and if adopted, it could enhance diagnostic consistency across studies. This approach uses the single "slash" term "necrosis/inflammatory cell infiltrate (NICI)" as the diagnosis for the spectrum of lesions seen in younger rats, uses no threshold for diagnosis (e.g., diagnose all lesions clearly identifiable as PCM/like), and uses aggregate lesion size of approximately ≥45% of the field of view (FOV) using a 10×/22 eyepiece and the 40× objective or approximately ≥100% of the FOV using the 60× objective as the criterion separating minimal from mild severities.


Subject(s)
Cardiomyopathies/pathology , Diagnostic Imaging/methods , Rats, Sprague-Dawley , Rodent Diseases/pathology , Toxicity Tests/veterinary , Animals , Cardiomyopathies/veterinary , Cardiotoxicity/pathology , Cardiotoxicity/veterinary , Computer Simulation , Diagnostic Imaging/standards , Diagnostic Imaging/veterinary , Disease Progression , Male , Necrosis , Severity of Illness Index
5.
J Toxicol Pathol ; 26(3 Suppl): 1S-26S, 2013.
Article in English | MEDLINE | ID: mdl-25035576

ABSTRACT

The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a joint initiative of the Societies of Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP), and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature for classifying lesions observed in the soft tissues including skeletal muscle as well as the mesothelium of rats and mice. The standardized nomenclature of lesions presented in this document is also available electronically on the Internet (http://www.goreni.org/). Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous developmental and aging lesions as well as those induced by exposure to test materials. A widely accepted and utilized international harmonization of nomenclature for lesions in soft tissues, skeletal muscle and mesothelium in laboratory animals will decrease confusion among regulatory and scientific research organizations in different countries and provide a common language to increase and enrich international exchanges of information among toxicologists and pathologists. (DOI: 10.1293/tox.26.1S; J Toxicol Pathol 2013; 26: 1S-26S).

6.
J Clin Invest ; 122(12): 4473-89, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23143309

ABSTRACT

The genetic diversity of HIV-1 represents a major challenge in vaccine development. In this study, we establish a rationale for eliminating HIV-1-infected cells by targeting cellular immune responses against stable human endogenous retroviral (HERV) antigens. HERV DNA sequences in the human genome represent the remnants of ancient infectious retroviruses. We show that the infection of CD4+ T cells with HIV-1 resulted in transcription of the HML-2 lineage of HERV type K [HERV-K(HML-2)] and the expression of Gag and Env proteins. HERV-K(HML-2)-specific CD8+ T cells obtained from HIV-1-infected human subjects responded to HIV-1-infected cells in a Vif-dependent manner in vitro. Consistent with the proposed mode of action, a HERV-K(HML-2)-specific CD8+ T cell clone exhibited comprehensive elimination of cells infected with a panel of globally diverse HIV-1, HIV-2, and SIV isolates in vitro. We identified a second T cell response that exhibited cross-reactivity between homologous HIV-1-Pol and HERV-K(HML-2)-Pol determinants, raising the possibility that homology between HIV-1 and HERVs plays a role in shaping, and perhaps enhancing, the T cell response to HIV-1. This justifies the consideration of HERV-K(HML-2)-specific and cross-reactive T cell responses in the natural control of HIV-1 infection and for exploring HERV-K(HML-2)-targeted HIV-1 vaccines and immunotherapeutics.


Subject(s)
CD4-Positive T-Lymphocytes/virology , Endogenous Retroviruses/physiology , HIV-1/physiology , HIV-2/physiology , Immunity, Cellular , Simian Immunodeficiency Virus/physiology , Amino Acid Sequence , Animals , Antigens, Viral/genetics , Antigens, Viral/immunology , Antigens, Viral/metabolism , CD4-Positive T-Lymphocytes/immunology , Cells, Cultured , Endogenous Retroviruses/immunology , Endogenous Retroviruses/metabolism , Gene Expression Regulation, Viral , Gene Products, gag/genetics , Gene Products, gag/immunology , Gene Products, gag/metabolism , HIV Infections/immunology , HIV Infections/virology , HIV-1/immunology , HIV-1/isolation & purification , HIV-2/immunology , HIV-2/isolation & purification , Host-Pathogen Interactions , Humans , Molecular Sequence Data , Simian Immunodeficiency Virus/immunology , Simian Immunodeficiency Virus/isolation & purification , Transcriptional Activation , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Viral Envelope Proteins/metabolism , Virus Integration , Virus Internalization , vif Gene Products, Human Immunodeficiency Virus/physiology
7.
Mutagenesis ; 27(6): 721-9, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22935223

ABSTRACT

An in vivo photomicronucleus test (MNT) using rat skin, the target organ for photoirritancy and carcinogenicity, was recently described. The assay was evaluated using fluoroquinolone (FQ) antibiotics with varying degrees of phototoxic potency (i.e. sparflocacin [SPFX], lomefloxacin [LOFX], ciprofloxacin [CIFX], levofloxacin [LEFX], gemifloxacin [GEFX] and gatifloxacin [GAFX]) using a solar simulator producing both UVA and UVB (ratio 23:1). Experiments were performed at The Netherlands Organisation for Applied Scientific Research (TNO) and GlaxoSmithKline (GSK) to investigate interlaboratory variability, including evaluation of phototoxicity (clinical signs), micronucleus induction and histopathology. The potency of micronuclei (MN) formation in rat skin induced by the FQs was SPFX = LOFX > CIFX = LEFX, however, MN induction was only statistically significant for SPFX and LOFX. In both laboratories, GEFX and GAFX did not increase the MN frequencies compared to the irradiated vehicle control. Signs of phototoxicity, including clinical and histopathological changes, were observed with SPFX and LOFX to a similar degree as the positive control, 8-methoxypsoralen. In addition, there were some clinical signs of phototoxicity seen with CIFX, LEFX, GEFX and GAFX, but not always in both laboratories for CIFX, GEFX and GAFX and when observed, these were considered only mild. Of these, only LEFX also showed histopathological changes. In all studies, photogenotoxic potency correlated with photocarcinogenic potential and moreover, photogenotoxicity was not observed in the absence of phototoxicity. The results of the TNO/GSK study indicate that the in vivo rat skin photoMNT may be a promising tool for detection of photoclastogencity and photoirritancy in the skin/eye in the same animal. Given the association between the MNT and cancer, the skin photoMNT may also provide a promising tool for the early detection of photocarcinogenesis and help bridge the gap in the existing photosafety testing paradigm.


Subject(s)
Anti-Bacterial Agents/toxicity , Dermatitis, Phototoxic/pathology , Fluoroquinolones/toxicity , Micronucleus Tests/methods , Skin/radiation effects , Animals , Comet Assay/methods , Male , Netherlands , Rats , Rats, Sprague-Dawley , Skin/drug effects , Skin/pathology , Ultraviolet Rays/adverse effects
8.
J Immunol ; 189(3): 1467-79, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22745376

ABSTRACT

The expression of endogenous retrotransposable elements, including long interspersed nuclear element 1 (LINE-1 or L1) and human endogenous retrovirus, accompanies neoplastic transformation and infection with viruses such as HIV. The ability to engender immunity safely against such self-antigens would facilitate the development of novel vaccines and immunotherapies. In this article, we address the safety and immunogenicity of vaccination with these elements. We used immunohistochemical analysis and literature precedent to identify potential off-target tissues in humans and establish their translatability in preclinical species to guide safety assessments. Immunization of mice with murine L1 open reading frame 2 induced strong CD8 T cell responses without detectable tissue damage. Similarly, immunization of rhesus macaques with human LINE-1 open reading frame 2 (96% identity with macaque), as well as simian endogenous retrovirus-K Gag and Env, induced polyfunctional T cell responses to all Ags, and Ab responses to simian endogenous retrovirus-K Env. There were no adverse safety or pathological findings related to vaccination. These studies provide the first evidence, to our knowledge, that immune responses can be induced safely against this class of self-antigens and pave the way for investigation of them as HIV- or tumor-associated targets.


Subject(s)
AIDS Vaccines/administration & dosage , AIDS Vaccines/immunology , Cancer Vaccines/administration & dosage , Cancer Vaccines/immunology , DNA Transposable Elements/immunology , Endogenous Retroviruses/immunology , AIDS Vaccines/genetics , Adult , Amino Acid Sequence , Animals , Cancer Vaccines/genetics , DNA Transposable Elements/genetics , Disease Models, Animal , Endogenous Retroviruses/genetics , Endogenous Retroviruses/metabolism , Female , Humans , Macaca mulatta , Male , Mice , Mice, Inbred BALB C , Molecular Sequence Data , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/immunology
9.
Toxicol Pathol ; 40(5): 810-8, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22504321

ABSTRACT

Peroxisome proliferator-activated receptors (PPARs) represent therapeutic targets for the management of type 2 diabetes mellitus and dyslipidemia. Rodent carcinogenicity studies have revealed a link between γ and dual γ/α PPAR agonist treatment and the increased incidence of subcutaneous (SC) liposarcomas/fibrosarcomas or hemangiosarcomas, but very little has been reported for potent and selective PPARα agonists. We present a mode of action framework for the development of SC mesenchymal tumors in rodents given PPAR agonists. (1) Tumor promotion results from pharmacologically mediated recruitment (proliferation and differentiation), thermogenesis and adipogenesis of stromovascular cells, and subsequent generation of oxidative free radicals. (2) Tumor initiation consists of chemotype-driven mitochondrial dysfunction causing uncontrolled oxidative stress and permanent DNA damage. Promotion is characterized by enhanced adipogenesis in the SC adipose tissue, where the baseline PPARγ expression and responsiveness to PPARγ ligands is the highest, and by thermogenesis through expression of the uncoupling protein 1 (UCP-1) and the PPARγ co-activator 1 α (PGC-1α), two factors more highly expressed in brown versus white adipose tissue. Initiation is supported by the demonstration of mitochondrial uncoupling and OXPHOS Complexes dysfunction (Complexes III, IV and V) by compounds associated with increased incidences of sarcomas (muraglitazar and troglitazone), but not others lacking malignant tumor effects (pioglitazone, rosiglitazone).


Subject(s)
Hypoglycemic Agents/toxicity , PPAR alpha/agonists , PPAR gamma/agonists , Sarcoma/chemically induced , Adipogenesis/drug effects , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Animals , Cell Differentiation , Chromans/toxicity , DNA Damage/drug effects , Diabetes Mellitus, Type 2/physiopathology , Diabetes Mellitus, Type 2/therapy , Glycine/analogs & derivatives , Glycine/toxicity , Ion Channels/genetics , Ion Channels/metabolism , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Oxazoles/toxicity , Oxidative Stress/drug effects , PPAR alpha/genetics , PPAR alpha/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Pioglitazone , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Rats , Rodentia/metabolism , Rosiglitazone , Sarcoma/pathology , Thermogenesis/drug effects , Thiazolidinediones/toxicity , Transcription Factors/genetics , Transcription Factors/metabolism , Troglitazone , Uncoupling Protein 1
10.
Toxicol Pathol ; 40(3): 435-47, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22301950

ABSTRACT

Weak peroxisome proliferator-activated receptor (PPAR) α agonists (fibrates) are used to treat dyslipidemia. This study compared the effects of the potent and selective PPARα agonist CP-778875 on peroxisomal ß-oxidation and cardiac and/or skeletal muscle injury with those of the weak PPARα agonist fenofibrate. We hypothesized that these muscle effects are mediated through the PPARα receptor, leading to increased ß-oxidation and consequent oxidative stress. CP-778875 (5 or 500 mg/kg) and fenofibrate (600 or 2,000→1,200 mg/kg, dose lowered because of intolerance) were administered to rats for six weeks. Standard end points, serum troponin I, heart and skeletal muscle ß-oxidation of palmitoyl-CoA, and acyl co-oxidase (AOX) mRNA were assessed. Both compounds dose-dependently increased the incidence and/or severity of cardiomyocyte degeneration and necrosis, heart weight, troponin I, and skeletal muscle degeneration. Mean heart ß-oxidation (3.4- to 5.1-fold control) and AOX mRNA (2.4- to 3.2-fold control) were increased with CP-778875 500 mg/kg and both doses of fenofibrate. ß-Oxidation of skeletal muscle was not affected by either compound; however, a significant increase in AOX mRNA (1.6- to 2.1-fold control) was observed with CP-778875 500 mg/kg and both doses of fenofibrate. Taken together, these findings were consistent with PPARα agonism and support the link between increased cardiac and skeletal muscle ß-oxidation and resultant muscle injury in the rat.


Subject(s)
Fenofibrate/toxicity , Heart/drug effects , Muscle, Skeletal/drug effects , Oxidative Stress/drug effects , PPAR alpha/agonists , Animals , Blood Chemical Analysis , Body Weight , Dose-Response Relationship, Drug , Female , Fenofibrate/pharmacokinetics , Liver/chemistry , Liver/drug effects , Liver/enzymology , Liver/pathology , Male , Muscle Proteins/metabolism , Muscle, Skeletal/chemistry , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Diseases/chemically induced , Muscular Diseases/metabolism , Myocardium/chemistry , Myocardium/metabolism , Myocardium/pathology , NAD/metabolism , Peroxisomes/metabolism , Rats , Rats, Sprague-Dawley , Toxicity Tests , Troponin I/blood , Troponin I/metabolism
11.
Hum Reprod Update ; 17(6): 791-802, 2011.
Article in English | MEDLINE | ID: mdl-21733981

ABSTRACT

BACKGROUND: Endometriosis is a benign gynaecological condition that presents symptoms of chronic pelvic pain and the ectopic growth of endometrial lesions at sites on the peritoneum. Few new approaches to the management of the disease symptoms and progression have emerged in decades. The cornerstone of developing new therapies is the confidence and translational value placed in the preclinical models used to assess efficacy of emerging approaches. METHODS: We systematically reviewed preclinical efficacy data from rodent and non-human primates, evaluating the effects of an investigational agent or target reported in PubMed between 2000 and 2010. We evaluated the reports for which model and end-points had been used to determine efficacy, whether there was evidence of independent replication, whether techniques had been incorporated into the experimental design to eliminate potential bias and whether there was a confirmation of drug exposure or target engagement in the study. RESULTS: We identified 94 publications that met our criteria for review. Efficacy studies were conducted in a wider range of different models with no clear consensus on which model or end-point has the most translational value. The large majority of studies either did not report what measures were incorporated into the design to address potential bias or account for it or did not confirm whether the specified target was engaged. CONCLUSIONS: Greater scrutiny of the preclinical efficacy models, end-points and experimental designs is needed if the desire of translating novel treatment approaches is to be realized for women with endometriosis.


Subject(s)
Endometriosis/drug therapy , Animals , Cyclooxygenase 2 Inhibitors/therapeutic use , Disease Models, Animal , Endometriosis/enzymology , Endometriosis/etiology , Endometriosis/pathology , Female , Humans , Primates , Rodentia , Translational Research, Biomedical/methods , Translational Research, Biomedical/standards , Treatment Outcome
12.
Mutagenesis ; 25(4): 407-16, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20460329

ABSTRACT

For pharmaceuticals, current regulatory guidance for photosafety testing states that studies are warranted for drug candidates that both absorb light in the range of 290-700 nm and that are either applied topically or reach the skin or eyes by systemic exposure. In contrast to standard genotoxicity evaluations, where a positive (or equivocal) result in vitro can be placed into context with additional testing in vivo, there are no equivalent short-term in vivo photogenotoxicity assays in the current photosafety test battery. Therefore, a short-term in vivo assay for the evaluation of a photogenotoxic potential in the skin, the target organ for photocarcinogenicity, was developed in rats. After oral 8-methoxypsoralen administration, rats were exposed to ultraviolet radiation and sacrificed 3 days after treatment to isolate epidermal cells for subsequent micronucleus (MN) evaluation. Optimal conditions were determined to obtain maximal induction of MN, followed by demonstrating feasibility and reproducibility of the method. The results of the present study indicate that the in vivo rat skin photomicronucleus test may be a promising tool for detection of photoclastogenicity. Given the association between MN induction and cancer, the assay may also provide a promising tool for the early detection of photocarcinogenesis and help bridge the gap in the existing photosafety testing paradigm.


Subject(s)
Micronucleus Tests/methods , Skin/radiation effects , Animals , Dose-Response Relationship, Radiation , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/radiation effects , Male , Methoxsalen/administration & dosage , Methoxsalen/toxicity , Rats , Rats, Sprague-Dawley , Skin/drug effects , Skin/metabolism
13.
Mol Cancer Ther ; 9(4): 883-94, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20354118

ABSTRACT

The Aurora family of highly related serine/threonine kinases plays a key role in the regulation of mitosis. Aurora1 and Aurora2 play important but distinct roles in the G(2) and M phases of the cell cycle and are essential for proper chromosome segregation and cell division. Overexpression and amplification of Aurora2 have been reported in different tumor types, including breast, colon, pancreatic, ovarian, and gastric cancer. PF-03814735 is a novel, potent, orally bioavailable, reversible inhibitor of both Aurora1 and Aurora2 kinases that is currently in phase I clinical trials for the treatment of advanced solid tumors. In intact cells, the inhibitory activity of PF-03814735 on the Aurora1 and Aurora2 kinases reduces levels of phospho-Aurora1, phosphohistone H3, and phospho-Aurora2. PF-03814735 produces a block in cytokinesis, resulting in inhibition of cell proliferation and the formation of polyploid multinucleated cells. Although PF-03814735 produces significant inhibition of several other protein kinases, the predominant biochemical effects in cellular assays are consistent with inhibition of Aurora kinases. Once-daily oral administration of PF-03814735 to mice bearing human xenograft tumors produces a reduction in phosphohistone H3 in tumors at doses that are tolerable and that result in significant inhibition of tumor growth. The combination of PF-03814735 and docetaxel in xenograft mouse tumor models shows additive tumor growth inhibition. These results support the clinical evaluation of PF-03814735 in cancer patients. Mol Cancer Ther; 9(4); 883-94. (c)2010 AACR.


Subject(s)
Heterocyclic Compounds, 3-Ring/pharmacokinetics , Heterocyclic Compounds, 3-Ring/therapeutic use , Neoplasms/drug therapy , Neoplasms/enzymology , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrimidines/pharmacokinetics , Pyrimidines/therapeutic use , Administration, Oral , Animals , Aurora Kinases , Biological Availability , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Heterocyclic Compounds, 3-Ring/administration & dosage , Heterocyclic Compounds, 3-Ring/pharmacology , Histones/metabolism , Humans , Mice , Mice, Nude , Neoplasms/pathology , Phosphorylation/drug effects , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/metabolism , Pyrimidines/administration & dosage , Pyrimidines/pharmacology , Substrate Specificity/drug effects , Xenograft Model Antitumor Assays
14.
Drug Chem Toxicol ; 31(4): 427-45, 2008.
Article in English | MEDLINE | ID: mdl-18850354

ABSTRACT

Dexamethasone (DEXA) administration has been associated with serum alanine aminotransferase (ALT) elevations that may result from enhanced ALT expression. The aim of our current study was to compare liver vs. serum ALT activity and to examine the onset of any hepatocellular changes. Groups of 4 male Sprague-Dawley rats were administered a single dose of DEXA or corn oil at 12, 16, and 24 h prior to euthanasia or once-daily for 2, 3, or 4 days. All (nonfasted) rats were necropsied together on Day 5. While DEXA incrementally increased liver ALT activity in the 1-, 2-, 3-, and 4-day treatment groups (maximal, 3.7-fold), liver aspartate aminotransferase (AST) never exceeded 1.4-fold over control. Significant hepatic glycogen elevations were detected after DEXA treatment, which correlated with microscopic observations. Serum ALT, AST, sorbitol dehydrogenase, and glutamate dehydrogenase (GLDH) increased after 2, 3, and 4 days of DEXA dosing (1.3-10.3-fold). DEXA-related necropsy findings included pale livers consistent with glycogen deposition. The relative percent liver to body weight was elevated in all DEXA-treated rats. Hepatocellular necrosis was observed in 1/4 rats at 12 h, 2/4 rats at 2 days, 4/4 rats at 3 days, and 3/4 rats at 4 days. DEXA treatment <2 days failed to produce consistent evidence of hepatic injury, as detected by serum biomarkers and pathology assessment. However, early DEXA treatment did correlate with apparent ALT induction. Ultimately, this may explain some early asymptomatic serum ALT elevations seen clinically.


Subject(s)
Alanine Transaminase/metabolism , Dexamethasone/administration & dosage , Glucocorticoids/administration & dosage , Liver/drug effects , Alanine Transaminase/blood , Animals , Biomarkers/metabolism , Glycogen/metabolism , Liver/enzymology , Liver/pathology , Male , Necrosis , Rats , Rats, Sprague-Dawley , Time Factors , Up-Regulation
15.
Drug Metab Dispos ; 35(10): 1963-9, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17627974

ABSTRACT

Alterations in transporter expression may represent a compensatory mechanism of damaged hepatocytes to reduce accumulation of potentially toxic compounds. The present study was conducted to investigate the expression of hepatobiliary efflux transporters in livers from patients after toxic acetaminophen (APAP) ingestion, with livers from patients with primary biliary cirrhosis (PBC) serving as positive controls. mRNA and protein expression of multidrug resistance-associated protein (MRP) 1-6, multidrug resistance protein (MDR) 1-3/P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP) in normal (n = 6), APAP overdose (n = 5), and PBC (n = 6) human liver samples were determined by branched DNA and Western blot analysis, respectively. Double immunohistochemical staining of P-gp and proliferating cell nuclear antigen (PCNA), a marker of proliferation, was performed on paraffin-embedded tissue sections. Compared with normal liver specimens, MRP1 and MRP4 mRNA levels were elevated after APAP overdose and in PBC. Up-regulation of MRP5, MDR1, and BCRP mRNA occurred in PBC livers. Protein levels of MRP4, MRP5, BCRP, and P-gp were increased in both disease states, with MRP1 and MRP3 protein also being induced in PBC. Increased P-gp protein was confirmed immunohistochemically and was found to localize to areas of PCNA-positive hepatocytes, which were detected in APAP overdose and PBC livers. The findings from this study demonstrate that hepatic efflux transporter expression is up-regulated in cases of APAP-induced liver failure and PBC. This adaptation may aid in reducing retention of byproducts of cellular injury and bile constituents within hepatocytes. The close proximity of P-gp and PCNA-positive hepatocytes during liver injury suggests that along with cell regeneration, increased efflux transporter expression is a critical response to hepatic damage to protect the liver from additional insult.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Acetaminophen/poisoning , Analgesics, Non-Narcotic/poisoning , Liver Cirrhosis, Biliary/metabolism , Liver Failure, Acute/metabolism , Liver/metabolism , ATP-Binding Cassette Transporters/genetics , Adolescent , Adult , Aged , Child , Drug Overdose , Humans , Liver/drug effects , Liver Failure, Acute/chemically induced , Middle Aged , RNA, Messenger/metabolism
16.
Am J Pathol ; 169(3): 750-60, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16936252

ABSTRACT

Peroxisomal proliferator-activated receptor (PPAR)-alpha is a ligand-activated transcriptional factor that regulates genes involved in lipid metabolism and energy homeostasis. PPAR-alpha activators, including fibrates, have been used to treat dyslipidemia for several decades. In contrast to their known effects on lipids, the pharmacological consequences of PPAR-alpha activation on cardiac metabolism and function are not well understood. Therefore, we evaluated the role that PPAR-alpha receptors play in the heart. Our studies demonstrate that activation of PPAR-alpha receptors using a selective PPAR-alpha ligand results in cardiomyocyte necrosis in mice. Studies in PPAR-alpha-deficient mice demonstrated that cardiomyocyte necrosis is a consequence of the activation of PPAR-alpha receptors. Cardiac fatty acyl-CoA oxidase mRNA levels increased at doses in which cardiac damage was observed and temporally preceded cardiomyocyte degeneration, suggesting that peroxisomal beta-oxidation correlates with the appearance of microscopic injury and cardiac injury biomarkers. Increased myocardial oxidative stress was evident in mice treated with the PPAR-alpha agonists coinciding with increased peroxisomal biomarkers of fatty acid oxidation. These findings suggest that activation of PPAR-alpha leads to increased cardiac fatty acid oxidation and subsequent accumulation of oxidative stress intermediates resulting in cardiomyocyte necrosis.


Subject(s)
Cardiomyopathies/metabolism , Lipid Metabolism , Myocytes, Cardiac/metabolism , PPAR alpha/metabolism , Acyl-CoA Oxidase/biosynthesis , Acyl-CoA Oxidase/genetics , Animals , Anticholesteremic Agents/pharmacology , Biomarkers/metabolism , Cardiomyopathies/chemically induced , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Clofibric Acid/pharmacology , Fatty Acids/genetics , Fatty Acids/metabolism , Heart Injuries/chemically induced , Heart Injuries/genetics , Heart Injuries/metabolism , Heart Injuries/pathology , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Mice , Mice, Knockout , Myocytes, Cardiac/pathology , Necrosis/genetics , Necrosis/metabolism , Necrosis/pathology , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Oxidative Stress/genetics , PPAR alpha/agonists , PPAR alpha/deficiency , Peroxisomes/metabolism , Peroxisomes/pathology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics
17.
Toxicol Sci ; 89(2): 370-9, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16177239

ABSTRACT

Following acute chemical injury, hepatocytes are generally more resistant to toxicant re-exposure. Alterations in expression of hepatobiliary transport systems may contribute to this resistance by preventing accumulation of potentially toxic chemicals. Previous data demonstrate the concomitant reduction of uptake transporter and induction of efflux transporter mRNA during chemical liver injury. The present study further characterizes the expression of multidrug resistance-associated proteins 1-4 (Mrp1-4), breast cancer resistance protein (Bcrp) and sodium-taurocholate co-transporting polypeptide (Ntcp) in mouse liver following administration of the hepatotoxicants acetaminophen (APAP) and carbon tetrachloride (CCl4). Mice received hepatotoxic doses of APAP (400 mg/kg), CCl4 (10 or 25 microl/kg), or vehicle, ip. Livers were collected at 6, 24, and 48 h for Western blot quantification and immunofluorescence analysis. Protein expression of Bcrp was unchanged with treatment. Ntcp levels were preserved in APAP-exposed livers and reduced to 30-50% of control after CCl4. Conversely, Mrp1-4 expression was differentially up-regulated. CCl4 increased Mrp1 (3.5-fold), Mrp2 (1.4-fold), and Mrp4 (26-fold) while reducing Mrp3 levels to 20% of control. Administration of APAP enhanced expression of Mrp2 (1.6-fold), Mrp3 (3.5-fold), and Mrp4 (16-fold). Immunostaining of liver sections obtained 48 h after hepatotoxicant treatment confirmed expression patterns of a subset of transporters (Bcrp, Ntcp, Mrp3, and Mrp4). Double immunofluorescence imaging demonstrated the simultaneous down-regulation of Ntcp and up-regulation of Mrp4 in hepatocytes adjacent to the central vein after CCl4. Altered expression of transporters may reduce the overall chemical burden of an injured liver during recovery and contribute to the resistance of hepatocytes to subsequent toxicant exposure.


Subject(s)
Chemical and Drug Induced Liver Injury/metabolism , Liver/drug effects , Multidrug Resistance-Associated Proteins/biosynthesis , Acetaminophen/toxicity , Animals , Blotting, Western , Carbon Tetrachloride/toxicity , Chemical and Drug Induced Liver Injury/etiology , Down-Regulation , Immunohistochemistry , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Up-Regulation
18.
Toxicol Pathol ; 33(1): 86-91, 2005.
Article in English | MEDLINE | ID: mdl-15805059

ABSTRACT

Laser scanning cytometry (LSC) is a new technology that combines the properties and advantages of flow cytometry (FC) and immunohistochemistry (IHC), thus providing qualitative and quantitative information on protein expression with the additional perspective provided by cell and tissue localization. Formalin-fixed, paraffin embedded liver sections from rats exposed to a Peroxisome Proliferator Activated Receptor (PPAR) agonist were stained with antibodies against peroxisomal targeting signal-1 (PTS-1) (a highly conserved tripeptide contained within all peroxisomal enzymes), Acyl CoA oxidase (AOX) (the rate limiting enzyme of peroxisomal beta oxidation), and catalase (an inducible peroxisomal antioxidant enzyme) to evaluate peroxisomal beta oxidation, oxidative stress, and peroxisome proliferation. The LSC showed increased AOX, catalase, and PTS-1 expression in centrilobular hepatocytes that correlated favorably with the microscopic observation of centrilobular hepatocellular hypertrophy and with the palmitoyl CoA biochemical assay for peroxisomal beta oxidation, and provided additional morphologic information about peroxisome proliferation and tissue patterns of activation. Therefore, the LSC provides qualitative and quantitative evaluation of peroxisome activity with similar sensitivity but higher throughput than the traditional biochemical methods. The additional benefits of the LSC include the direct correlation between histopathologic observations and peroxisomal alterations and the potential utilization of archived formalin-fixed tissues from a variety of organs and species.


Subject(s)
Laser Scanning Cytometry , Peroxisome Proliferator-Activated Receptors/metabolism , Peroxisome Proliferators/toxicity , Peroxisomes/metabolism , Acyl-CoA Oxidase/metabolism , Animals , Catalase/metabolism , Dose-Response Relationship, Drug , Female , Liver/metabolism , Male , Oxidation-Reduction , Palmitoyl Coenzyme A/metabolism , Peroxisomes/drug effects , Rats , Rats, Sprague-Dawley , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...