Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Type of study
Language
Publication year range
2.
Article in English | MEDLINE | ID: mdl-30746524

ABSTRACT

The false spider mite Brevipalpus yothersi infests a broad host plant range and has become one of the most economically important species within the genus Brevipalpus. This phytophagous mite inflicts damage by both feeding on plants and transmitting plant viruses. Here, we report the first draft genome sequence of the false spider mite, which is also the first plant virus mite vector to be sequenced. The ∼72 Mb genome (sequenced at 42× coverage) encodes ∼16,000 predicted protein-coding genes.

3.
J Hered ; 109(4): 426-437, 2018 05 11.
Article in English | MEDLINE | ID: mdl-29471487

ABSTRACT

The Lesser Antillean Iguana (Iguana delicatissima) is an endangered species threatened by habitat loss and hybridization with non-native Green Iguanas (Iguana iguana). Iguana delicatissima has been extirpated on several islands, and the Green Iguana has invaded most islands with extant populations. Information is essential to protect this species from extinction. We collected data on 293 iguanas including 17 juveniles from St. Eustasius, one of the few remaining I. delicatissima strongholds. Genetic data were leveraged to test for hybridization presence with the Green Iguana using both mitochondrial and nuclear genes, including 16 microsatellite loci. The microsatellites were also analyzed to estimate genetic diversity, population structure, and effective population size. Using molecular and morphological data, we identified 286 I. delicatissima individuals captured during our first fieldwork effort, and 7 non-native iguanas captured during a second effort, showing hybridization occurs within this population. Comparing homologous microsatellites used in studies on Dominica and Chancel, the I. delicatissima population on St. Eustatius has extremely low genetic diversity (HO = 0.051; HE = 0.057), suggesting this population is genetically depauperate. Furthermore, there is significant evidence for inbreeding (FIS = 0.12) and weak spatial genetic structure (FST = 0.021, P = 0.002) within this population. Besides immediate threats including hybridization, this population's low genetic diversity, presence of physiological abnormalities and low recruitment could indicate presence of inbreeding depression that threatens its long-term survival. We conclude there is a continued region-wide threat to I. delicatissima and highlight the need for immediate conservation action to stop the continuing spread of Green Iguanas and to eliminate hybridization from St. Eustatius.


Subject(s)
Genetic Variation , Genetics, Population , Iguanas/genetics , Microsatellite Repeats/genetics , Animals , Breeding , Conservation of Natural Resources , Ecosystem , Endangered Species , Female , Hybridization, Genetic , Islands , Male , Population Density
4.
Exp Appl Acarol ; 64(2): 207-21, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24806619

ABSTRACT

Whereas endosymbiont-induced incompatibility is known to occur in various arthropod taxa, such as spider mites, insects and isopods, it has been rarely reported in plant-inhabiting predatory mites (Acari: Phytoseiidae). Recent cross-breeding studies with the phytoseiid mite Neoseiulus paspalivorus De Leon revealed a complete post-mating reproductive isolation between specimens collected from three geographic origins-Northeast Brazil (South America), Benin and Ghana (West Africa)-even though they are morphologically similar. We carried out a study to assess to what extent these populations exhibit genetic differences and whether endosymbionts are involved in the incompatibility. First, we used the mitochondrial cytochrome oxidase I (COI) gene to assess genetic diversity among the three populations. Second, we used a PCR-based method to check for the presence of Wolbachia and/or Cardinium in these populations, and we determined their phylogenetic relationships using specific primers for Wolbachia and Cardinium 16S rDNA genes. Third, we also conducted a test using an antibiotic (tetracycline) in an attempt to eliminate the symbionts and evaluate their effects on the reproductive compatibility of their host. Based on the DNA sequences of their COI genes, specimens of the three populations appear to be genetically similar. However, the 16S rDNA gene sequences of their associated endosymbionts differed among the three populations: the Benin and Brazil populations harbour different strains of Wolbachia symbionts, whereas the Ghana population harbours Cardinium symbionts. In response to antibiotic treatment females of each of the three populations became incompatible with untreated males of their own population, similar to that observed in crossings between females from one geographic population and males from another. Compatibility was restored in crosses involving uninfected Brazil females and uninfected Benin males, whereas the reciprocal crosses remained incompatible. Cardinium symbionts seem to be essential for oviposition in the Ghana population. It is concluded that their associated bacterial symbionts are the cause of the post-mating reproductive isolation previously observed among the three geographic populations. This insight is relevant to biological control of coconut mites for which N. paspalivorus is an effective predator, because introducing one geographic strain into the population of another (e.g. in field releases or mass cultures) may cause population growth depression.


Subject(s)
Mites/microbiology , Mites/physiology , Wolbachia/isolation & purification , Animals , Anti-Bacterial Agents , Benin , Brazil , DNA, Mitochondrial/genetics , Female , Genetic Variation , Ghana , Male , Mites/genetics , Phylogeny , Predatory Behavior , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Wolbachia/drug effects
5.
Exp Appl Acarol ; 57(1): 15-36, 2012 May.
Article in English | MEDLINE | ID: mdl-22407586

ABSTRACT

Surveys were conducted in Brazil, Benin and Tanzania to collect predatory mites as candidates for control of the coconut mite Aceria guerreronis Keifer, a serious pest of coconut fruits. At all locations surveyed, one of the most dominant predators on infested coconut fruits was identified as Neoseiulus baraki Athias-Henriot, based on morphological similarity with regard to taxonomically relevant characters. However, scrutiny of our own and published descriptions suggests that consistent morphological differences may exist between the Benin population and those from the other geographic origins. In this study, we combined three methods to assess whether these populations belong to one species or a few distinct, yet closely related species. First, multivariate analysis of 32 morphological characters showed that the Benin population differed from the other three populations. Second, DNA sequence analysis based on the mitochondrial cytochrome oxidase subunit I (COI) showed the same difference between these populations. Third, cross-breeding between populations was unsuccessful in all combinations. These data provide evidence for the existence of cryptic species. Subsequent morphological research showed that the Benin population can be distinguished from the others by a new character (not included in the multivariate analysis), viz. the number of teeth on the fixed digit of the female chelicera.


Subject(s)
Mites/physiology , Animals , Benin , Brazil , Breeding , Female , Geography , Hybridization, Genetic , Male , Mites/anatomy & histology , Mites/genetics , Multivariate Analysis , Predatory Behavior , Sexual Behavior, Animal , Tanzania
SELECTION OF CITATIONS
SEARCH DETAIL