Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Soc Rev ; 50(22): 12308-12337, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34569580

ABSTRACT

Solvent molecules interact with reactive species and alter the rates and selectivities of catalytic reactions by orders of magnitude. Specifically, solvent molecules can modify the free energies of liquid phase and surface species via solvation, participating directly as a reactant or co-catalyst, or competitively binding to active sites. These effects carry consequences for reactions relevant for the conversion of renewable or recyclable feedstocks, the development of distributed chemical manufacturing, and the utilization of renewable energy to drive chemical reactions. First, we describe the quantitative impact of these effects on steady-state catalytic turnover rates through a rate expression derived for a generic catalytic reaction (A → B), which illustrates the functional dependence of rates on each category of solvent interaction. Second, we connect these concepts to recent investigations of the effects of solvents on catalysis to show how interactions between solvent and reactant molecules at solid-liquid interfaces influence catalytic reactions. This discussion demonstrates that the design of effective liquid phase catalytic processes benefits from a clear understanding of these intermolecular interactions and their implications for rates and selectivities.

2.
Angew Chem Int Ed Engl ; 60(17): 9650-9659, 2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33559910

ABSTRACT

CH3 OH formation rates in CO2 hydrogenation on Cu-based catalysts sensitively depend on the nature of the support and the presence of promoters. In this context, Cu nanoparticles supported on tailored supports (highly dispersed M on SiO2 ; M=Ti, Zr, Hf, Nb, Ta) were prepared via surface organometallic chemistry, and their catalytic performance was systematically investigated for CO2 hydrogenation to CH3 OH. The presence of Lewis acid sites enhances CH3 OH formation rate, likely originating from stabilization of formate and methoxy surface intermediates at the periphery of Cu nanoparticles, as evidenced by metrics of Lewis acid strength and detection of surface intermediates. The stabilization of surface intermediates depends on the strength of Lewis acid M sites, described by pyridine adsorption enthalpies and 13 C chemical shifts of -OCH3 coordinated to M; these chemical shifts are demonstrated here to be a molecular descriptor for Lewis acid strength and reactivity in CO2 hydrogenation.

3.
J Control Release ; 317: 166-180, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31726076

ABSTRACT

Fibrin gels have been extensively used for three-dimensional cell culture, bleeding control, and molecular and cell therapies because the fibrous networks facilitate biomolecular and cell transport. However, a small window for gelation makes it difficult to handle the gels for desired preparation and transport. Several methods developed to control gelation rates often alter the microstructure, thereby affecting the mechanical response. We hypothesized that a particle designed to discharge thrombin cargos in response to an external stimulus, such as H2O2, would provide control of the gelation rate over a broad range while strengthening the gel. We examined this hypothesis by assembling poly (lactic-co-glycolic acid) (PLGA) particles loaded with thrombin and MnO2 nanosheets that decompose H2O2 to O2 gas. The resulting particles named as catalytic microgelator were mixed with fibrinogen solution or blood containing 0.2mM H2O2. Due to the increased internal pressure, these particles released a 3-fold larger mass of thrombin than PLGA particles loaded only with thrombin. As a consequence, catalytic microgelators increased the gelation time by one order of magnitude and the elastic modulus by a factor of two compared with the fibrin gel formed by directly mixing fibrinogen and thrombin in solution. These catalytic microgelators also served to clot blood, unlike PLGA particles loaded with thrombin. The resulting blood clot was also more rigid than the blood clot formed by thrombin solution. The results of this study would serve as a new paradigm in controlling gelation kinetics of pre-gel solution and mechanical properties of the post-gel matrix.


Subject(s)
Hydrogen Peroxide , Manganese Compounds , Fibrin , Fibrinogen , Gels , Oxides , Thrombin
4.
J Am Chem Soc ; 141(18): 7302-7319, 2019 05 08.
Article in English | MEDLINE | ID: mdl-30649870

ABSTRACT

Hydrophobic voids within titanium silicates have long been considered necessary to achieve high rates and selectivities for alkene epoxidations with H2O2. The catalytic consequences of silanol groups and their stabilization of hydrogen-bonded networks of water (H2O), however, have not been demonstrated in ways that lead to a clear understanding of their importance. We compare turnover rates for 1-octene epoxidation and H2O2 decomposition over a series of Ti-substituted zeolite *BEA (Ti-BEA) that encompasses a wide range of densities of silanol nests ((SiOH)4). The most hydrophilic Ti-BEA gives epoxidation turnover rates that are 100 times larger than those in defect-free Ti-BEA, yet rates of H2O2 decomposition are similar for all (SiOH)4 densities. These differences cause the most hydrophilic Ti-BEA to also give the highest selectivities, which defies conventional wisdom. Spectroscopic, thermodynamic, and kinetic evidence indicate that these catalytic differences are not due to changes in the electronic affinity of the active site, the electronic structure of Ti-OOH intermediates, or the mechanism for epoxidation. Comparisons of apparent activation enthalpies and entropies show that differences in epoxidation rates and selectivities reflect favorable entropy gains produced when epoxidation transition states disrupt hydrogen-bonded H2O clusters anchored to (SiOH)4 near active sites. Transition states for H2O2 decomposition hydrogen bond with H2O in ways similar to Ti-OOH reactive species, such that decomposition becomes insensitive to the presence of (SiOH)4. Collectively, these findings clarify how molecular interactions between reactive species, hydrogen-bonded solvent networks, and polar surfaces can influence rates and selectivities for epoxidation (and other reactions) in zeolite catalysts.


Subject(s)
Alkenes/chemistry , Epoxy Compounds/chemistry , Hydrogen Peroxide/chemistry , Zeolites/chemistry , Catalysis , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Solvents
5.
J Am Chem Soc ; 139(20): 6888-6898, 2017 05 24.
Article in English | MEDLINE | ID: mdl-28453262

ABSTRACT

Group IV and V framework-substituted zeolites have been used for olefin epoxidation reactions for decades, yet the underlying properties that determine the selectivities and turnover rates of these catalysts have not yet been elucidated. Here, a combination of kinetic, thermodynamic, and in situ spectroscopic measurements show that when group IV (i.e., Ti, Zr, and Hf) or V (i.e., Nb and Ta) transition metals are substituted into zeolite *BEA, the metals that form stronger Lewis acids give greater selectivities and rates for the desired epoxidation pathway and present smaller enthalpic barriers for both epoxidation and H2O2 decomposition reactions. In situ UV-vis spectroscopy shows that these group IV and V materials activate H2O2 to form pools of hydroperoxide, peroxide, and superoxide intermediates. Time-resolved UV-vis measurements and the isomeric distributions of Z-stilbene epoxidation products demonstrate that the active species for epoxidations on group IV and V transition metals are only M-OOH/-(O2)2- and M-(O2)- species, respectively. Mechanistic interpretations of kinetic data suggest that these group IV and V materials catalyze cyclohexene epoxidation and H2O2 decomposition through largely identical Eley-Rideal mechanisms that involve the irreversible activation of coordinated H2O2 followed by reaction with an olefin or H2O2. Epoxidation rates and selectivities vary over five- and two-orders of magnitude, respectively, among these catalysts and depend exponentially on the energy for ligand-to-metal charge transfer (LMCT) and the functional Lewis acid strength of the metal centers. Together, these observations show that more electrophilic active-oxygen species (i.e., lower-energy LMCT) are more reactive and selective for epoxidations of electron-rich olefins and explain why Ti-based catalysts have been identified as the most active among early transition metals for these reactions. Further, H2O2 decomposition (the undesirable reaction pathway) possesses a weaker dependence on Lewis acidity than epoxidation, which suggests that the design of catalysts with increased Lewis acid strength will simultaneously increase the reactivity and selectivity of olefin epoxidation.

SELECTION OF CITATIONS
SEARCH DETAIL
...