Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Cell Rep Methods ; 4(5): 100764, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38714198

ABSTRACT

Co-assembling enzymes with nanoparticles (NPs) into nanoclusters allows them to access channeling, a highly efficient form of multienzyme catalysis. Using pyruvate kinase (PykA) and lactate dehydrogenase (LDH) to convert phosphoenolpyruvic acid to lactic acid with semiconductor quantum dots (QDs) confirms how enzyme cluster formation dictates the rate of coupled catalytic flux (kflux) across a series of differentially sized/shaped QDs and 2D nanoplatelets (NPLs). Enzyme kinetics and coupled flux were used to demonstrate that by mixing different NP systems into clusters, a >10× improvement in kflux is observed relative to free enzymes, which is also ≥2× greater than enhancement on individual NPs. Cluster formation was characterized with gel electrophoresis and transmission electron microscopy (TEM) imaging. The generalizability of this mixed-NP approach to improving flux is confirmed by application to a seven-enzyme system. This represents a powerful approach for accessing channeling with almost any choice of enzymes constituting a multienzyme cascade.


Subject(s)
L-Lactate Dehydrogenase , Lactic Acid , Nanoparticles , Phosphoenolpyruvate , Pyruvate Kinase , L-Lactate Dehydrogenase/metabolism , L-Lactate Dehydrogenase/chemistry , Lactic Acid/metabolism , Lactic Acid/chemistry , Pyruvate Kinase/metabolism , Pyruvate Kinase/chemistry , Nanoparticles/chemistry , Phosphoenolpyruvate/metabolism , Quantum Dots/chemistry , Kinetics
2.
ACS Omega ; 9(3): 3894-3904, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38284012

ABSTRACT

Evolution has gifted enzymes with the ability to synthesize an abundance of small molecules with incredible control over efficiency and selectivity. Central to an enzyme's role is the ability to selectively catalyze reactions in the milieu of chemicals within a cell. However, for chemists it is often desirable to extend the substrate scope of reactions to produce analogue(s) of a desired product and therefore some degree of enzyme promiscuity is often desired. Herein, we examine this dichotomy in the context of the violacein biosynthetic pathway. Importantly, we chose to interrogate this pathway with tryptophan analogues in vitro, to mitigate possible interference from cellular components and endogenous tryptophan. A total of nine tryptophan analogues were screened for by analyzing the substrate promiscuity of the initial enzyme, VioA, and compared to the substrate tryptophan. These results suggested that for VioA, substitutions at either the 2- or 4-position of tryptophan were not viable. The seven analogues that showed successful substrate conversion by VioA were then applied to the five enzyme cascade (VioABEDC) for the production of violacein, where l-tryptophan and 6-fluoro-l-tryptophan were the only substrates which were successfully converted to the corresponding violacein derivative(s). However, many of the other tryptophan analogues did convert to various substituted intermediaries. Overall, our results show substrate promiscuity with the initial enzyme, VioA, but much less for the full pathway. This work demonstrates the complexity involved when attempting to analyze substrate analogues within multienzymatic cascades, where each enzyme involved within the cascade possesses its own inherent promiscuity, which must be compatible with the remaining enzymes in the cascade for successful formation of a desired product.

3.
Adv Mater ; 36(5): e2309963, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37944537

ABSTRACT

Synthetic biology is touted as the next industrial revolution as it promises access to greener biocatalytic syntheses to replace many industrial organic chemistries. Here, it is shown to what synthetic biology can offer in the form of multienzyme cascades for the synthesis of the most basic of new materials-chemicals, including especially designer chemical products and their analogs. Since achieving this is predicated on dramatically expanding the chemical space that enzymes access, such chemistry will probably be undertaken in cell-free or minimalist formats to overcome the inherent toxicity of non-natural substrates to living cells. Laying out relevant aspects that need to be considered in the design of multi-enzymatic cascades for these purposes is begun. Representative multienzymatic cascades are critically reviewed, which have been specifically developed for the synthesis of compounds that have either been made only by traditional organic synthesis along with those cascades utilized for novel compound syntheses. Lastly, an overview of strategies that look toward exploiting bio/nanomaterials for accessing channeling and other nanoscale materials phenomena in vitro to direct novel enzymatic biosynthesis and improve catalytic efficiency is provided. Finally, a perspective on what is needed for this field to develop in the short and long term is presented.


Subject(s)
Nanostructures , Biocatalysis , Catalysis
4.
Nanoscale ; 15(23): 10159-10175, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37272342

ABSTRACT

Enzyme activity can be many times enhanced in configurations where they are displayed on a nanoparticle (NP) and this same format sometimes even provides access to channeling phenomena within multienzyme cascades. Here, we demonstrate that such enhancement phenomena can be expanded to enzymatic cofactor recycling along with the coupled enzymatic processes that they are associated with. We begin by showing that the efficiency of glucose driven reduction of nicotinamide adenine dinucleotide (NAD+ → NADH) by glucose dehydrogenase (GDH) is enhanced ca. 5-fold when the enzyme is displayed on nanocrystalline semiconductor quantum dots (QDs) which are utilized as prototypical NP materials in our experimental assays. Coupling this enzymatic step with NADH-dependent lactate dehydrogenase (LDH) conversion of lactate to pyruvate also increases the latter's rate by a similar amount when both enzymes were jointly incorporated into self-assembled QD-based nanoclusters. Detailed agarose gel mobility assays and transmission electron microscopy imaging studies confirm that both tetrameric enzymes assemble to and crosslink the QDs into structured nanoclusters via their multiple-pendant terminal (His)6 sequences. Unexpectedly, control experiments utilizing blocking peptides to prevent enzyme-crosslinking of QDs resulted in even further enhancement of individual enzyme on-QD kinetic activity. This activity was also probed revealing that 200-fold excess peptide/QD addition enhanced individual GDH and LDH on-QD kcat a further 2- and 1.5×, respectively, above that seen just by QD display to a maximum of ∼10-fold GDH enhancement. The potential implications for how these enzyme kinetics-enhancing phenomena can be applied to single and multi-enzyme cascaded reactions in the context of cofactor recycling and cell-free synthetic biology are discussed.


Subject(s)
Nanoparticles , Quantum Dots , NAD/chemistry , Kinetics , Nanoparticles/chemistry , Quantum Dots/chemistry , L-Lactate Dehydrogenase/metabolism , Peptides/chemistry
5.
Nat Commun ; 14(1): 1757, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36990995

ABSTRACT

Access to efficient enzymatic channeling is desired for improving all manner of designer biocatalysis. We demonstrate that enzymes constituting a multistep cascade can self-assemble with nanoparticle scaffolds into nanoclusters that access substrate channeling and improve catalytic flux by orders of magnitude. Utilizing saccharification and glycolytic enzymes with quantum dots (QDs) as a model system, nanoclustered-cascades incorporating from 4 to 10 enzymatic steps are prototyped. Along with confirming channeling using classical experiments, its efficiency is enhanced several fold more by optimizing enzymatic stoichiometry with numerical simulations, switching from spherical QDs to 2-D planar nanoplatelets, and by ordering the enzyme assembly. Detailed analyses characterize assembly formation and clarify structure-function properties. For extended cascades with unfavorable kinetics, channeled activity is maintained by splitting at a critical step, purifying end-product from the upstream sub-cascade, and feeding it as a concentrated substrate to the downstream sub-cascade. Generalized applicability is verified by extending to assemblies incorporating other hard and soft nanoparticles. Such self-assembled biocatalytic nanoclusters offer many benefits towards enabling minimalist cell-free synthetic biology.


Subject(s)
Nanoparticles , Quantum Dots , Nanoparticles/chemistry , Quantum Dots/chemistry , Biocatalysis , Catalysis , Kinetics
6.
Glob Chall ; 6(9): 2200057, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36176938

ABSTRACT

Glyphosate is a globally applied herbicide yet it has been relatively undetectable in-field samples outside of gold-standard techniques. Its presumed nontoxicity toward humans has been contested by the International Agency for Research on Cancer, while it has been detected in farmers' urine, surface waters and crop residues. Rapid, on-site detection of glyphosate is hindered by lack of field-deployable and easy-to-use sensors that circumvent sample transportation to limited laboratories that possess the equipment needed for detection. Herein, the flavoenzyme, glycine oxidase, immobilized on platinum-decorated laser-induced graphene (LIG) is used for selective detection of glyphosate as it is a substrate for GlyOx. The LIG platform provides a scaffold for enzyme attachment while maintaining the electronic and surface properties of graphene. The sensor exhibits a linear range of 10-260 µ m, detection limit of 3.03 µ m, and sensitivity of 0.991 nA µ m -1. The sensor shows minimal interference from the commonly used herbicides and insecticides: atrazine, 2,4-dichlorophenoxyacetic acid, dicamba, parathion-methyl, paraoxon-methyl, malathion, chlorpyrifos, thiamethoxam, clothianidin, and imidacloprid. Sensor function is further tested in complex river water and crop residue fluids, which validate this platform as a scalable, direct-write, and selective method of glyphosate detection for herbicide mapping and food analysis.

7.
Methods Mol Biol ; 2487: 227-262, 2022.
Article in English | MEDLINE | ID: mdl-35687240

ABSTRACT

Interest in multi-enzyme synthesis outside of cells (in vitro) is becoming far more prevalent as the field of cell-free synthetic biology grows exponentially. Such synthesis would allow for complex chemical transformations based on the exquisite specificity of enzymes in a "greener" manner as compared to organic chemical transformations. Here, we describe how nanoparticles, and in this specific case-semiconductor quantum dots, can be used to both stabilize enzymes and further allow them to self-assemble into nanocomplexes that facilitate high-efficiency channeling phenomena. Pertinent protocol information is provided on enzyme expression, choice of nanoparticulate material, confirmation of enzyme attachment to nanoparticles, assay format and tracking, data analysis, and optimization of assay formats to draw the best analytical information from the underlying processes.


Subject(s)
Nanoparticles , Quantum Dots , Biocatalysis , Kinetics , Nanoparticles/chemistry , Quantum Dots/chemistry
8.
PLoS One ; 17(3): e0265274, 2022.
Article in English | MEDLINE | ID: mdl-35298538

ABSTRACT

Cell-free protein synthesis systems (CFPS) utilize cellular transcription and translation (TX-TL) machinery to synthesize proteins in vitro. These systems are useful for multiple applications including production of difficult proteins, as high-throughput tools for genetic circuit screening, and as systems for biosensor development. Though rapidly evolving, CFPS suffer from some disadvantages such as limited reaction rates due to longer diffusion times, significant cost per assay when using commercially sourced materials, and reduced reagent stability over prolonged periods. To address some of these challenges, we conducted a series of proof-of-concept experiments to demonstrate enhancement of CFPS productivity via nanoparticle assembly driven nanoaggregation of its constituent proteins. We combined a commercially available CFPS that utilizes purified polyhistidine-tagged (His-tag) TX-TL machinery with CdSe/CdS/ZnS core/shell/shell quantum dots (QDs) known to readily coordinate His-tagged proteins in an oriented fashion. We show that nanoparticle scaffolding of the CFPS cross-links the QDs into nanoaggregate structures while enhancing the production of functional recombinant super-folder green fluorescent protein and phosphotriesterase, an organophosphate hydrolase; the latter by up to 12-fold. This enhancement, which occurs by an undetermined mechanism, has the potential to improve CFPS in general and specifically CFPS-based biosensors (faster response time) while also enabling rapid detoxification/bioremediation through point-of-concern synthesis of similar catalytic enzymes. We further show that such nanoaggregates improve production in diluted CFPS reactions, which can help to save money and extend the amount of these costly reagents. The results are discussed in the context of what may contribute mechanistically to the enhancement and how this can be applied to other CFPS application scenarios.


Subject(s)
Biosensing Techniques , Quantum Dots , Cell-Free System , Protein Biosynthesis , Proteins
9.
ACS Nano ; 14(9): 12234-12247, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32845122

ABSTRACT

The first step of SARS-CoV-2 infection is binding of the spike protein's receptor binding domain to the host cell's ACE2 receptor on the plasma membrane. Here, we have generated a versatile imaging probe using recombinant Spike receptor binding domain conjugated to fluorescent quantum dots (QDs). This probe is capable of engaging in energy transfer quenching with ACE2-conjugated gold nanoparticles to enable monitoring of the binding event in solution. Neutralizing antibodies and recombinant human ACE2 blocked quenching, demonstrating a specific binding interaction. In cells transfected with ACE2-GFP, we observed immediate binding of the probe on the cell surface followed by endocytosis. Neutralizing antibodies and ACE2-Fc fully prevented binding and endocytosis with low nanomolar potency. Importantly, we will be able to use this QD nanoparticle probe to identify and validate inhibitors of the SARS-CoV-2 Spike and ACE2 receptor binding in human cells. This work enables facile, rapid, and high-throughput cell-based screening of inhibitors for coronavirus Spike-mediated cell recognition and entry.


Subject(s)
Endocytosis , Metal Nanoparticles/chemistry , Peptidyl-Dipeptidase A/metabolism , Quantum Dots/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2 , Betacoronavirus/metabolism , COVID-19 , Coronavirus Infections/metabolism , Gold , Humans , Pandemics , Peptidyl-Dipeptidase A/physiology , Pneumonia, Viral/metabolism , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Virion
10.
Article in English | MEDLINE | ID: mdl-32671028

ABSTRACT

Over the past two decades, various scaffolds have been designed and synthesized to organize enzyme cascades spatially for enhanced enzyme activity based on the concepts of substrate channeling and enhanced stability. The most bio-compatible synthetic scaffolds known for enzyme immobilization are protein and DNA nanostructures. Herein, we examined the utility of the T4 phage capsid to serve as a naturally occurring protein scaffold for the immobilization of a three-enzyme cascade: Amylase, Maltase, and Glucokinase. Covalent constructs between each of the enzymes and the outer capsid protein Hoc were prepared through SpyTag-SpyCatcher pairing and assembled onto phage capsids in vitro with an estimated average of 90 copies per capsid. The capsid-immobilized Maltase has a fourfold higher initial rate relative to Maltase free in solution. Kinetic analysis also revealed that the immobilized three-enzyme cascade has an 18-fold higher converted number of NAD+ to NADH relative to the mixtures in solution. Our results demonstrate that the T4 phage capsid can act as a naturally occurring scaffold with substantial potential to enhance enzyme activity by spatially organizing enzymes on the capsid Hoc.

11.
Sensors (Basel) ; 20(7)2020 Apr 06.
Article in English | MEDLINE | ID: mdl-32268471

ABSTRACT

We demonstrate the viability of using ultra-thin sheets of microbially grown nanocellulose to build functional medical sensors. Microbially grown nanocellulose is an interesting alternative to plastics, as it is hydrophilic, biocompatible, porous, and hydrogen bonding, thereby allowing the potential development of new application routes. Exploiting the distinguishing properties of this material enables us to develop solution-based processes to create nanocellulose printed circuit boards, allowing a variety of electronics to be mounted onto our nanocellulose. As proofs of concept, we have demonstrated applications in medical sensing such as heart rate monitoring and temperature sensing-potential applications fitting the wide-ranging paradigm of a future where the Internet of Things is dominant.


Subject(s)
Biocompatible Materials/chemistry , Biosensing Techniques , Cellulose/chemistry , Nanostructures/chemistry , Biocompatible Materials/therapeutic use , Body Temperature , Cellulose/therapeutic use , Heart Rate/physiology , Humans , Internet of Things , Monitoring, Physiologic/trends , Nanostructures/therapeutic use
12.
ACS Sens ; 5(5): 1295-1304, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32096987

ABSTRACT

Lipases are an important class of lipid hydrolyzing enzymes that play significant roles in many aspects of cell biology and digestion; they also have large roles in commercial food and biofuel preparation and are being targeted for pharmaceutical development. Given these, and many other biotechnological roles, sensitive and specific biosensors capable of monitoring lipase activity in a quantitative manner are critical. Here, we describe a Förster resonance energy transfer (FRET)-based biosensor that originates from a custom-synthesized ester substrate displaying a peptide at one end and a dye acceptor at the other. These substrates were ratiometrically self-assembled to luminescent semiconductor quantum dot (QD) donors by metal affinity coordination using the appended peptide's terminal hexahistidine motif to give rise to the full biosensing construct. This resulted in a high rate of FRET between the QD donor and the proximal substrate's dye acceptor. The lipase hydrolyzed the intervening target ester bond in the peptide substrate which, in turn, displaced the dye acceptor containing component and altered the rate of FRET in a concentration-dependent manner. Specifics of the substrate's stepwise synthesis are described along with the sensors assembly, characterization, and application in a quantitative proof-of-concept demonstration assay that is based on an integrated Michaelis-Menten kinetic approach. The utility of this unique nanoparticle-based architecture within a sensor configuration is then discussed.


Subject(s)
Biosensing Techniques , Quantum Dots , Esters , Fluorescence Resonance Energy Transfer , Lipase
13.
Bioconjug Chem ; 30(7): 2060-2074, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31283212

ABSTRACT

Enhancements in enzymatic catalytic activity are frequently observed when an enzyme is displayed on a nanoparticle (NP) surface. The exact mechanisms of how this unique interfacial environment gives rise to this phenomenon are still not understood, although evidence suggests that it can help alleviate some of the enzyme's rate-limiting mechanistic steps. The physicochemical limitations that govern when this process arises are also not known including, in particular, the range of NP size and curvature that are associated with it. To investigate the latter, we undertook a case study using the enzyme phosphotriesterase (PTE) and a series of differentially sized gold NPs (AuNPs). PTE, expressed with a terminal hexahistidine sequence, was ratiometrically coordinated to a series of increasing size AuNPs (diameter ≃ 1.5, 5, 10, 20, 55, 100 nm) surface-functionalized with Ni2+-nitrilotriacetic acid ligands and its activity assayed in a comparative format versus that of equivalent amounts of free enzyme controls. PTE-AuNP samples were prepared where the total PTE concentration and NP surface density were kept fixed by varying AuNP concentration along with the converse format. Assembly to the AuNPs increased PTE kcat ca. 3-10-fold depending upon NP size, with the smaller-sized particles showing the highest increase, while enzyme efficiency only increased 2-fold. Further kinetic testing suggested that the PTE enhancement again arose from alleviating its rate limiting step of enzyme-product release and not from a change in the activation energy. Comparison of kcat and enzyme specificity with AuNP diameter revealed that enhancement was directly correlated to AuNP size and curvature with the smaller NPs showing the largest kinetic enhancements. Kinetic simulations showed that almost all of the PTE enhancement variation across AuNP sizes could be reproduced by adjusting only the rate of enzyme-product dissociation. Understanding how NP size directly affects the enhancement of an attached enzyme can provide a rational basis for designing hybrid enzyme-NP materials that specifically exploit this emergent property.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Phosphoric Triester Hydrolases/chemistry , Biocatalysis , Enzyme Activation , Enzymes, Immobilized/chemistry , Kinetics , Metal Nanoparticles/ultrastructure , Models, Molecular , Particle Size
14.
Small ; 15(34): e1900510, 2019 08.
Article in English | MEDLINE | ID: mdl-31207082

ABSTRACT

A web-based resource for meta-analysis of nanomaterials toxicity is developed whereby the utility of Bayesian networks (BNs) is illustrated for exploring the cellular toxicity of Cd-containing quantum dots (QDs). BN models are developed based on a dataset compiled from 517 publications comprising 3028 cell viability data samples and 837 IC50 values. BN QD toxicity (BN-QDTox) models are developed using both continuous (i.e., numerical) and categorical attributes. Using these models, the most relevant attributes identified for correlating IC50 are: QD diameter, exposure time, surface ligand, shell, assay type, surface modification, and surface charge, with the addition of QD concentration for the cell viability analysis. Data exploration via BN models further enables identification of possible association rules for QDs cellular toxicity. The BN models as web-based applications can be used for rapid intelligent query of the available body of evidence for a given nanomaterial and can be readily updated as the body of knowledge expands.


Subject(s)
Cells/drug effects , Quantum Dots/toxicity , Toxicity Tests , Bayes Theorem , Cell Survival/drug effects , Inhibitory Concentration 50
15.
Sci Rep ; 9(1): 6931, 2019 05 06.
Article in English | MEDLINE | ID: mdl-31061428

ABSTRACT

We present the first demonstration of a fully-flexible, self-powered glucose indicator system that synergizes two flexible electronic technologies: a flexible self-powering unit in the form of a biofuel cell, with a flexible electronic device - a circuit-board decal fabricated with biocompatible microbial nanocellulose. Our proof-of-concept device, comprising an enzymatic glucose fuel cell, glucose sensor and a LED indicator, does not require additional electronic equipment for detection or verification; and the entire structure collapses into a microns-thin, self-adhering, single-centimeter-square decal, weighing less than 40 mg. The flexible glucose indicator system continuously operates a light emitting diode (LED) through a capacitive charge/discharge cycle, which is directly correlated to the glucose concentration. Our indicator was shown to operate at high sensitivity within a linear glucose concentration range of 1 mM-45 mM glucose continuously, achieving a 1.8 VDC output from a flexible indicator system that deliver sufficient power to drive an LED circuit. Importantly, the results presented provide a basis upon which further development of indicator systems with biocompatible diffusing polymers to act as buffering diffusion barriers, thereby allowing them to be potentially useful for low-cost, direct-line-of-sight applications in medicine, husbandry, agriculture, and the food and beverage industries.

16.
ACS Sens ; 3(10): 1894-2024, 2018 10 26.
Article in English | MEDLINE | ID: mdl-30080029

ABSTRACT

Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current "gold" standards for biothreat detection/diagnostics along with a listing of relevant FDA approved in vitro diagnostic devices is then discussed to provide an overview of the current state of the art. Given the 2014 outbreak of Ebola virus in Western Africa and the recent 2016 spread of Zika virus in the Americas, discussion of what constitutes a public health emergency and how new in vitro diagnostic devices are authorized for emergency use in the U.S. are also included. The majority of the Review is then subdivided around the sensing of bacterial, viral, and toxin biothreats with each including an overview of the major agents in that class, a detailed cross-section of different sensing methods in development based on assay format or analytical technique, and some discussion of related microfluidic lab-on-a-chip/point-of-care devices. Finally, an outlook is given on how this field will develop from the perspective of the biosensing technology itself and the new emerging threats they may face.


Subject(s)
Bacteria/isolation & purification , Biological Warfare Agents , Biosensing Techniques/methods , Viruses/isolation & purification , Biological Warfare Agents/classification , Humans , Immunoassay , Limit of Detection , Point-of-Care Systems , Toxins, Biological/analysis , Virus Diseases/diagnosis
17.
ACS Nano ; 12(8): 7911-7926, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30044604

ABSTRACT

Multistep enzymatic cascades are becoming more prevalent in industrial settings as engineers strive to synthesize complex products and pharmaceuticals in economical, environmentally friendly ways. Previous work has shown that immobilizing enzymes on nanoparticles can enhance their activity significantly due to localized interfacial effects, and this enhancement remains in place even when that enzyme's activity is coupled to another enzyme that is still freely diffusing. Here, we investigate the effects of displaying two enzymes with coupled catalytic activity directly on the same nanoparticle surface. For this, the well-characterized enzymes pyruvate kinase (PykA) and lactate dehydrogenase (LDH) were utilized as a model system; they jointly convert phosphoenolpyruvate to lactate in two sequential steps as part of downstream glycolysis. The enzymes were expressed with terminal polyhistidine tags to facilitate their conjugation to semiconductor quantum dots (QDs) which were used here as prototypical nanoparticles. Characterization of enzyme coassembly to two different sized QDs showed a propensity to cross-link into nanoclusters consisting of primarily dimers and some trimers. Individual and joint enzyme activity in this format was extensively investigated in direct comparison to control samples lacking the QD scaffolds. We found that QD association enhances LDH activity by >50-fold and its total turnover by at least 41-fold, and that this high activation appears to be largely due to stabilization of its quarternary structure. When both enzymes are simultaneously bound to the QD surfaces, their colocalization leads to >100-fold improvements in the overall rates of coupled activity. Experimental results in conjunction with detailed kinetic simulations provide evidence that this significant improvement in coupled activity is partially attributable to a combination of enhanced enzymatic activity and stabilization of LDH. More importantly, experiments aimed at disrupting channeled processes and further kinetic modeling suggest that the bulk of the performance enhancement arises from intermediary "channeling" between the QD-colocalized enzymes. A full understanding of the underlying processes that give rise to such enhancements from coupled enzymatic activity on nanoparticle scaffolds can provide design criteria for improved biocatalytic applications.


Subject(s)
Lactate Dehydrogenases/metabolism , Nanoparticles/metabolism , Pyruvate Kinase/metabolism , Biocatalysis , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Kinetics , Lactate Dehydrogenases/chemistry , Lactobacillus leichmannii/enzymology , Nanoparticles/chemistry , Pyruvate Kinase/chemistry , Quantum Dots/chemistry , Quantum Dots/metabolism , Surface Properties
18.
ACS Appl Mater Interfaces ; 10(13): 11125-11134, 2018 Apr 04.
Article in English | MEDLINE | ID: mdl-29504744

ABSTRACT

Solution phase printing of graphene-based electrodes has recently become an attractive low-cost, scalable manufacturing technique to create in-field electrochemical biosensors. Here, we report a graphene-based electrode developed via inkjet maskless lithography (IML) for the direct and rapid monitoring of triple-O linked phosphonate organophosphates (OPs); these constitute the active compounds found in chemical warfare agents and pesticides that exhibit acute toxicity as well as long-term pollution to soils and waterways. The IML-printed graphene electrode is nano/microstructured with a 1000 mW benchtop laser engraver and electrochemically deposited platinum nanoparticles (dia. ∼25 nm) to improve its electrical conductivity (sheet resistance decreased from ∼10 000 to 100 Ω/sq), surface area, and electroactive nature for subsequent enzyme functionalization and biosensing. The enzyme phosphotriesterase (PTE) was conjugated to the electrode surface via glutaraldehyde cross-linking. The resulting biosensor was able to rapidly measure (5 s response time) the insecticide paraoxon (a model OP) with a low detection limit (3 nM), and high sensitivity (370 nA/µM) with negligible interference from similar nerve agents. Moreover, the biosensor exhibited high reusability (average of 0.3% decrease in sensitivity per sensing event), stability (90% anodic current signal retention over 1000 s), longevity (70% retained sensitivity after 8 weeks), and the ability to selectively sense OP in actual soil and water samples. Hence, this work presents a scalable printed graphene manufacturing technique that can be used to create OP biosensors that are suitable for in-field applications as well as, more generally, for low-cost biosensor test strips that could be incorporated into wearable or disposable sensing paradigms.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Electrodes , Graphite , Organophosphates , Printing
19.
Antibodies (Basel) ; 7(4)2018 Sep 29.
Article in English | MEDLINE | ID: mdl-31544886

ABSTRACT

The Bacillus collagen-like protein of anthracis (BclA), found in Bacillus anthracis spores, is an attractive target for immunoassays. Previously, using phage display we had selected llama-derived single-domain antibodies that bound to B. anthracis spore proteins including BclA. Single-domain antibodies (sdAbs), the recombinantly expressed heavy domains from the unique heavy-chain-only antibodies found in camelids, provide stable and well-expressed binding elements with excellent affinity. In addition, sdAbs offer the important advantage that they can be tailored for specific applications through protein engineering. A fusion of a BclA targeting sdAb with the enzyme Beta galactosidase (ß-gal) would enable highly sensitive immunoassays with no need for a secondary reagent. First, we evaluated five anti-BclA sdAbs, including four that had been previously identified but not characterized. Each was tested to determine its binding affinity, melting temperature, producibility, and ability to function as both capture and reporter in sandwich assays for BclA. The sdAb with the best combination of properties was constructed as a fusion with ß-gal and shown to enable sensitive detection. This fusion has the potential to be incorporated into highly sensitive assays for the detection of anthrax spores.

20.
Analyst ; 142(17): 3261-3271, 2017 Aug 21.
Article in English | MEDLINE | ID: mdl-28765846

ABSTRACT

The rapid detection of organophosphates (OPs), a class of strong neurotoxins, is critically important for monitoring acute insecticide exposure and potential chemical warfare agent use. Herein, we improve the enzymatic activity of a phosphotriesterase trimer (PTE3), an enzyme that selectively recognizes OPs directly, by conjugation with distinctly sized (i.e., 5, 10, and 20 nm diameter) gold nanoparticles (AuNPs). The number of enzymes immobilized on the AuNP was controlled by conjugating increasing molar ratios of PTE3 onto the AuNP surface via metal affinity coordination. This occurs between the PTE3-His6 termini and the AuNP-displayed Ni2+-nitrilotriacetic acid end groups and was confirmed with gel electrophoresis. The enzymatic efficiency of the resultant PTE3-AuNP bioconjugates was analyzed via enzyme progress curves acquired from two distinct assay formats that compared free unbound PTE3 with the following PTE3-AuNP bioconjugates: (1) fixed concentration of AuNPs while increasing the bioconjugate molar ratio of PTE3 displayed around the AuNP and (2) fixed concentration of PTE3 while increasing the bioconjugate molar ratio of PTE3-AuNP by decreasing the AuNP concentration. Both assay formats monitored the absorbance of p-nitrophenol that was produced as PTE3 hydrolyzed the substrate paraoxon, a commercial insecticide and OP nerve agent simulant. Results demonstrate a general equivalent trend between the two formats. For all experiments, a maximum enzymatic velocity (Vmax) increased by 17-fold over free enzyme for the lowest PTE3-AuNP ratio and the largest AuNP (i.e., ratio of 1 : 1, 20 nm dia. AuNP). This work provides a route to improve enzymatic OP detection strategies with enzyme-NP bioconjugates.

SELECTION OF CITATIONS
SEARCH DETAIL
...