Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 19(4): 2350-2359, 2019 04 10.
Article in English | MEDLINE | ID: mdl-30811940

ABSTRACT

Glass has been recently envisioned as a stronger and more robust alternative to silicon in microelectromechanical system applications, including high-frequency resonators and switches. Identifying the dynamic mechanical properties of microscale glass is thus vital for understanding their ability to withstand shocks and vibrations in such demanding applications. However, despite nearly half a century of research, the micromechanical properties of glass and amorphous materials in general are primarily limited to quasi-static strain rates below ∼0.1/s. Here, we report the in situ high-strain-rate experiments of fused silica micropillars inside a scanning electron microscope at strain rates up to 1335/s. A remarkable ductile-brittle-ductile failure mode transition was observed at increasing strain rates from 0.0008 to 1335/s as the deformation flow transitions between homogeneous-serrated-homogeneous regimes. Detailed surface topography investigation of the tested micropillars revealed that at the intermediate strain rate (<∼6/s) serrated flow regime, the load drops are caused by the sequential propagation of individual shear bands. Further, analytical calculations and finite element simulations suggest that the atomistic mechanism responsible for the homogeneous stress-strain curves at very high strain rates (>∼64/s) can be attributed to the simultaneous nucleation of multiple shear bands along with dissipative deformation heating. This unique rate-dependent deformation behavior of the glass micropillars highlights the importance and need of extending such microscale high-strain-rate studies to other amorphous materials such as metallic glasses and amorphous metals and alloys. Such investigations can provide critical insights about the damage tolerance and crashworthiness of these materials for real-life applications.

2.
Nanotechnology ; 20(36): 365706, 2009 Sep 09.
Article in English | MEDLINE | ID: mdl-19687546

ABSTRACT

Uniaxial quasi-static tensile testing on individual nanocrystalline Co nanowires (NWs), synthesized by electrochemical deposition process (EDP) in porous templates, was performed inside a scanning electron microscope (SEM) using a microfabricated tensile stage consisting of a comb drive actuator and a clamped-clamped beam force sensor. A 'three-beam structure' was fabricated by focused ion beam induced deposition (FIBID) on the stage, from which the specimen elongation and the tensile force could be measured simultaneously from SEM images at high magnification. A novel strategy of modifying device topography, e.g. in the form of trenches and pillars, was proposed to facilitate in situ SEM pick-and-place nanomanipulation, which could achieve a high yield of about 80% and reduce the difficulties in specimen preparation for tensile testing at the nanoscale. The measured apparent Young's modulus (75.3 +/- 14.6) GPa and tensile strength (1.6 +/- 0.4) GPa are significantly lower than the bulk modulus and the theoretical strength of monocrystalline samples, respectively. This result is important for designing Co NW-based devices. The origins of these distinctions are discussed in terms of the stiffnesses of the soldering portions, specimen misalignment, microstructure of the NWs and the experimental measurement uncertainty.

SELECTION OF CITATIONS
SEARCH DETAIL
...