Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 16(4)2024 04 10.
Article in English | MEDLINE | ID: mdl-38675927

ABSTRACT

Located 50 miles west of Fort Collins, Colorado, Colorado State University's Mountain Campus in Pingree Park hosted the 23rd annual Rocky Mountain Virology Association meeting in 2023 with 116 participants. The 3-day event at the end of September consisted of 28 talks and 43 posters that covered the topics of viral evolution and surveillance, developments in prion research, arboviruses and vector biology, host-virus interactions, and viral immunity and vaccines. This year's Randall Jay Cohrs keynote presentation covered the topic of One Health and emerging coronaviruses. This timely discussion covered the importance of global disease surveillance, international collaboration, and trans-disciplinary research teams to prevent and control future pandemics. Peak fall colors flanked the campus and glowed along the multiple mountain peaks, allowing for pristine views while discussing science and networking, or engaging in mountain activities like fly fishing and hiking. On behalf of the Rocky Mountain Virology Association, this report summarizes select presentations from the 23rd annual meeting.


Subject(s)
Virology , Humans , Colorado , Animals , Virus Diseases/virology , Viruses/genetics , Viruses/classification , Prions , Arboviruses , One Health
2.
Viruses ; 15(2)2023 02 15.
Article in English | MEDLINE | ID: mdl-36851753

ABSTRACT

Galbut virus (family Partitiviridae) infects Drosophila melanogaster and can be transmitted vertically from infected mothers or infected fathers with near perfect efficiency. This form of super-Mendelian inheritance should drive infection to 100% prevalence, and indeed, galbut virus is ubiquitous in wild D. melanogaster populations. However, on average, only about 60% of individual flies are infected. One possible explanation for this is that a subset of flies are resistant to infection. Although galbut virus-infected flies appear healthy, infection may be sufficiently costly to drive selection for resistant hosts, thereby decreasing overall prevalence. To test this hypothesis, we quantified a variety of fitness-related traits in galbut virus-infected flies from two lines from the Drosophila Genetic Reference Panel (DGRP). Galbut virus-infected flies had no difference in average lifespan and total offspring production compared to their uninfected counterparts. Galbut virus-infected DGRP-517 flies pupated and eclosed faster than their uninfected counterparts. Some galbut virus-infected flies exhibited altered sensitivity to viral, bacterial, and fungal pathogens. The microbiome composition of flies was not measurably perturbed by galbut virus infection. Differences in phenotype attributable to galbut virus infection varied as a function of fly sex and DGRP strain, and differences attributable to infection status were dwarfed by larger differences attributable to strain and sex. Thus, galbut virus infection does produce measurable phenotypic changes, with changes being minor, offsetting, and possibly net-negative.


Subject(s)
Drosophila melanogaster , Virus Diseases , Animals , Drosophila , Health Status , Phenotype
3.
Viruses ; 15(1)2022 12 29.
Article in English | MEDLINE | ID: mdl-36680138

ABSTRACT

Following the cause established twenty-two years ago, the 22nd Annual Rocky Mountain Virology Association meeting was held amidst the resplendent Rocky Mountains within the Arapahoe and Roosevelt National Forests. 116 intellectuals including both regional and international scientists as well as trainees gathered at the Colorado State University Mountain Campus for this three-day forum. Current trends in virology and prion disease research were discussed both in talks and poster presentations. This year's keynote address emphasized innate immune modulation by arboviruses while other invited speakers shared updates on noroviruses, retroviruses, coronaviruses and prion diversity. Additionally, the need for and importance of better approaches for sharing science with non-science communities via science communication was discussed. Trainees and junior investigators presented 19 talks and 31 posters. This report encapsulates selected studies presented at the 22nd Rocky Mountain National Virology Association meeting held on 30 September-2 October 2022.


Subject(s)
Congresses as Topic , Virology , Humans , Colorado , Prions , Retroviridae
4.
Viruses ; 13(12)2021 11 29.
Article in English | MEDLINE | ID: mdl-34960661

ABSTRACT

Nestled within the Rocky Mountain National Forest, 114 scientists and students gathered at Colorado State University's Mountain Campus for this year's 21st annual Rocky Mountain National Virology Association meeting. This 3-day retreat consisted of 31 talks and 30 poster presentations discussing advances in research pertaining to viral and prion diseases. The keynote address provided a timely discussion on zoonotic coronaviruses, lessons learned, and the path forward towards predicting, preparing, and preventing future viral disease outbreaks. Other invited speakers discussed advances in SARS-CoV-2 surveillance, molecular interactions involved in flavivirus genome assembly, evaluation of ethnomedicines for their efficacy against infectious diseases, multi-omic analyses to define risk factors associated with long COVID, the role that interferon lambda plays in control of viral pathogenesis, cell-fusion-dependent pathogenesis of varicella zoster virus, and advances in the development of a vaccine platform against prion diseases. On behalf of the Rocky Mountain Virology Association, this report summarizes select presentations.


Subject(s)
Virology , Animals , Host-Pathogen Interactions , Humans , Pandemics/prevention & control , Prion Diseases/diagnosis , Prion Diseases/prevention & control , Prions/immunology , Prions/isolation & purification , Prions/pathogenicity , Vaccines , Virology/organization & administration , Virus Diseases/diagnosis , Virus Diseases/epidemiology , Virus Diseases/prevention & control , Virus Diseases/virology , Viruses/classification , Viruses/immunology , Viruses/isolation & purification , Viruses/pathogenicity
5.
J Virol ; 94(20)2020 09 29.
Article in English | MEDLINE | ID: mdl-32759315

ABSTRACT

Partitiviruses are segmented, multipartite double-stranded RNA (dsRNA) viruses that until recently were only known to infect fungi, plants, and protozoans. Metagenomic surveys have revealed that partitivirus-like sequences are also commonly associated with arthropods. One arthropod-associated partitivirus, galbut virus, is common in wild populations of Drosophila melanogaster To begin to understand the processes that underlie this virus's high global prevalence, we established colonies of wild-caught infected flies. Infection remained at stably high levels over 3 years, with between 63 and 100% of individual flies infected. Galbut virus infects fly cells and replicates in tissues throughout infected adults, including reproductive tissues and the gut epithelium. We detected no evidence of horizontal transmission via ingestion, but vertical transmission from either infected females or infected males was ∼100% efficient. Vertical transmission of a related partitivirus, verdadero virus, that we discovered in a laboratory colony of Aedes aegypti mosquitoes was similarly efficient. This suggests that efficient biparental vertical transmission may be a feature of at least a subset of insect-infecting partitiviruses. To study the impact of galbut virus infection free from the confounding effect of other viruses, we generated an inbred line of flies with galbut virus as the only detectable virus infection. We were able to transmit infection experimentally via microinjection of homogenate from these galbut-only flies. This sets the stage for experiments to understand the biological impact and possible utility of partitiviruses infecting model organisms and disease vectors.IMPORTANCE Galbut virus is a recently discovered partitivirus that is extraordinarily common in wild populations of the model organism Drosophila melanogaster Like for most viruses discovered through metagenomics, most of the basic biological questions about this virus remain unanswered. We found that galbut virus, along with a closely related partitivirus found in Aedes aegypti mosquitoes, is transmitted from infected females or males to offspring with ∼100% efficiency and can be maintained in laboratory colonies over years. This efficient transmission mechanism likely underlies the successful spread of these viruses through insect populations. We created Drosophila lines that contained galbut virus as the only virus infection and showed that these flies can be used as a source for experimental infections. This provides insight into how arthropod-infecting partitiviruses may be maintained in nature and sets the stage for exploration of their biology and potential utility.


Subject(s)
Aedes/virology , Double Stranded RNA Viruses/metabolism , Animals , Drosophila melanogaster , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...