Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 20(13)2019 Jul 04.
Article in English | MEDLINE | ID: mdl-31277379

ABSTRACT

Hereditary Parkinson's disease (PD) can be triggered by an autosomal dominant overdose of alpha-Synuclein (SNCA) as stressor or the autosomal recessive deficiency of PINK1 Serine/Threonine-phosphorylation activity as stress-response. We demonstrated the combination of PINK1-knockout with overexpression of SNCAA53T in double mutant (DM) mice to exacerbate locomotor deficits and to reduce lifespan. To survey posttranslational modifications of proteins underlying the pathology, brain hemispheres of old DM mice underwent quantitative label-free global proteomic mass spectrometry, focused on Ser/Thr-phosphorylations. As an exceptionally strong effect, we detected >300-fold reductions of phosphoThr1928 in MAP1B, a microtubule-associated protein, and a similar reduction of phosphoSer3781 in ANK2, an interactor of microtubules. MAP1B depletion is known to trigger perturbations of microtubular mitochondria trafficking, neurite extension, and synaptic function, so it was noteworthy that relevantly decreased phosphorylation was also detected for other microtubule and microfilament factors, namely MAP2S1801, MARK1S394, MAP1AT1794, KIF1AS1537, 4.1NS541, 4.1GS86, and ADD2S528. While the MAP1B heavy chain supports regeneration and growth cones, its light chain assists DAPK1-mediated autophagy. Interestingly, relevant phosphorylation decreases of DAPK2S299, VPS13DS2429, and VPS13CS2480 in the DM brain affected regulators of autophagy, which are implicated in PD. Overall, significant downregulations were enriched for PFAM C2 domains, other kinases, and synaptic transmission factors upon automated bioinformatics, while upregulations were not enriched for selective motifs or pathways. Validation experiments confirmed the change of LC3 processing as reflection of excessive autophagy in DM brain, and dependence of ANK2/MAP1B expression on PINK1 levels. Our new data provide independent confirmation in a mouse model with combined PARK1/PARK4/PARK6 pathology that MAP1B/ANK2 phosphorylation events are implicated in Parkinsonian neurodegeneration. These findings expand on previous observations in Drosophila melanogaster that the MAP1B ortholog futsch in the presynapse is a primary target of the PARK8 protein LRRK2, and on a report that MAP1B is a component of the pathological Lewy body aggregates in PD patient brains. Similarly, ANK2 gene locus variants are associated with the risk of PD, ANK2 interacts with PINK1/Parkin-target proteins such as MIRO1 or ATP1A2, and ANK2-derived peptides are potent inhibitors of autophagy.


Subject(s)
Ankyrins/metabolism , Autophagy , Microtubule-Associated Proteins/metabolism , Phosphoproteins/metabolism , Protein Kinases/metabolism , Proteome/metabolism , Synapses/metabolism , alpha-Synuclein/metabolism , Aging/metabolism , Amino Acid Sequence , Animals , Brain/metabolism , Mice, Knockout , Mice, Mutant Strains , Microtubule-Associated Proteins/chemistry , Microtubules/metabolism , Phosphorylation , Phosphoserine/metabolism , Phosphothreonine/metabolism , Protein Domains
2.
Pflugers Arch ; 471(8): 1065-1078, 2019 08.
Article in English | MEDLINE | ID: mdl-31222491

ABSTRACT

Senescent cells, which are cells in a post-proliferative state, show an increased number of dysfunctional mitochondria and oxidatively damaged and aggregated proteins. The mitochondrial-lysosomal axis theory of aging proposes that the autophago-lysosomal system is unable to cope with the rising amount of damaged organelles and proteins. We used human umbilical vein endothelial cells (HUVEC) as in vitro model system to determine which part/s of the autophago-lysosomal pathway become deficient by aging. Senescent HUVEC contained a much larger population of autophagosomes and lysosomes compared to young cells. Transcriptome analysis comparing young and old cells demonstrated several age-related changes of autophagy gene expression. One reason for the observed increase of autophagosomes was an impairment of the autophagic flux in senescent cells due to reduced V-ATPase activity required for acidification of the lysosomes and thus functionality of lysosomal hydrolases. The hypothesis that reduced mitochondrial ATP production underlies low V-ATPase activity was supported by addition of exogenous ATP. This procedure rescued the lysosomal acidification and restored the autophagic flux. Thus, we propose impaired lysosomal acidification due to ATP shortage which may result from mitochondrial dysfunction as a mechanism underlying the accumulation of dysfunctional cellular constituents during aging.


Subject(s)
Autophagy , Cellular Senescence , Human Umbilical Vein Endothelial Cells/metabolism , Lysosomes/metabolism , Adenosine Triphosphate/metabolism , Human Umbilical Vein Endothelial Cells/cytology , Humans , Mitochondria/metabolism , Vacuolar Proton-Translocating ATPases/metabolism
3.
Transl Psychiatry ; 8(1): 1, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29317594

ABSTRACT

TMEM132D is a candidate gene, where risk genotypes have been associated with anxiety severity along with higher mRNA expression in the frontal cortex of panic disorder patients. Concurrently, in a high (HAB) and low (LAB) trait anxiety mouse model, Tmem132d was found to show increased expression in the anterior cingulate cortex (aCC) of HAB as compared to LAB mice. To understand the molecular underpinnings underlying the differential expression, we sequenced the gene and found two single-nucleotide polymorphisms (SNPs) in the promoter differing between both lines which could explain the observed mRNA expression profiles using gene reporter assays. In addition, there was no difference in basal DNA methylation in the CpG Island that encompasses the HAB vs. LAB Tmem132d promoter region. Furthermore, we found significantly higher binding of RNA polymerase II (POLR2A) to the proximal HAB-specific SNP (rs233264624) than the corresponding LAB locus in an oligonucleotide pull-down assay, suggesting increased transcription. Virus mediated overexpression of Tmem132d in the aCC of C57BL/6 J mice could confirm its role in mediating an anxiogenic phenotype. To model gene-environmental interactions, HAB mice exposed to enriched environment (HAB-EE) responded with decreased anxiety levels but, had enhanced Tmem132d mRNA expression as compared to standard-housed HAB (HAB-SH) mice. While LAB mice subjected to unpredictable chronic mild stress (LAB-UCMS) exhibited higher anxiety levels and had lower mRNA expression compared to standard-housed LAB (LAB-SH) mice. Chromatin immunoprecipitation revealed significantly higher binding of POLR2A to rs233264624 in HAB-EE, while LAB-UCMS had lower POLR2A binding at this locus, thus explaining the enhanced or attenuated expression of Tmem132d compared to their respective SH controls. To further investigate gene-environment interactions, DNA methylation was assessed using Illumina 450 K BeadChip in 74 panic disorder patients. Significant methylation differences were observed in two CpGs (cg26322591 and cg03283235) located in TMEM132D depending on the number of positive life events supporting the results of an influence of positive environmental cues on regulation of Tmem132d expression in mice.


Subject(s)
Anxiety/genetics , Behavior, Animal , Gene-Environment Interaction , Membrane Proteins/genetics , RNA Polymerase II/genetics , Animals , Brain/metabolism , Disease Models, Animal , Female , Male , Mice , Mice, Inbred C57BL , Polymorphism, Single Nucleotide , Promoter Regions, Genetic
4.
Dis Model Mech ; 10(5): 619-631, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28108469

ABSTRACT

Parkinson's disease (PD) is a frequent neurodegenerative process in old age. Accumulation and aggregation of the lipid-binding SNARE complex component α-synuclein (SNCA) underlies this vulnerability and defines stages of disease progression. Determinants of SNCA levels and mechanisms of SNCA neurotoxicity have been intensely investigated. In view of the physiological roles of SNCA in blood to modulate vesicle release, we studied blood samples from a new large pedigree with SNCA gene duplication (PARK4 mutation) to identify effects of SNCA gain of function as potential disease biomarkers. Downregulation of complexin 1 (CPLX1) mRNA was correlated with genotype, but the expression of other Parkinson's disease genes was not. In global RNA-seq profiling of blood from presymptomatic PARK4 indviduals, bioinformatics detected significant upregulations for platelet activation, hemostasis, lipoproteins, endocytosis, lysosome, cytokine, Toll-like receptor signaling and extracellular pathways. In PARK4 platelets, stimulus-triggered degranulation was impaired. Strong SPP1, GZMH and PLTP mRNA upregulations were validated in PARK4. When analysing individuals with rapid eye movement sleep behavior disorder, the most specific known prodromal stage of general PD, only blood CPLX1 levels were altered. Validation experiments confirmed an inverse mutual regulation of SNCA and CPLX1 mRNA levels. In the 3'-UTR of the CPLX1 gene we identified a single nucleotide polymorphism that is significantly associated with PD risk. In summary, our data define CPLX1 as a PD risk factor and provide functional insights into the role and regulation of blood SNCA levels. The new blood biomarkers of PARK4 in this Turkish family might become useful for PD prediction.


Subject(s)
Adaptor Proteins, Vesicular Transport/genetics , Biomarkers/blood , Genetic Predisposition to Disease , Lewy Body Disease/blood , Nerve Tissue Proteins/genetics , Parkinson Disease/genetics , REM Sleep Behavior Disorder/blood , RNA/blood , alpha-Synuclein/deficiency , Female , Heterozygote , Humans , Lewy Body Disease/genetics , Middle Aged , Parkinson Disease/blood , REM Sleep Behavior Disorder/physiopathology , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , alpha-Synuclein/blood , alpha-Synuclein/genetics
5.
Parkinsons Dis ; 2016: 4686185, 2016.
Article in English | MEDLINE | ID: mdl-27034888

ABSTRACT

Hereditary Parkinson's disease can be triggered by an autosomal dominant overdose of alpha-Synuclein (SNCA) or the autosomal recessive deficiency of PINK1. We recently showed that the combination of PINK1-knockout with overexpression of A53T-SNCA in double mutant (DM) mice potentiates phenotypes and reduces survival. Now we studied brain hemispheres of DM mice at age of 18 months in a hypothesis-free approach, employing a quantitative label-free global proteomic mass spectrometry scan of posttranslational modifications focusing on methyl-arginine. The strongest effects were documented for the adhesion modulator CMAS, the mRNA decapping/deadenylation factor PATL1, and the synaptic plasticity mediator CRTC1/TORC1. In addition, an intriguing effect was observed for the splicing factor PSF/SFPQ, known to interact with the dopaminergic differentiation factor NURR1 as well as with DJ-1, the protein responsible for the autosomal recessive PARK7 variant of PD. CRTC1, PSF, and DJ-1 are modulators of PGC1alpha and of mitochondrial biogenesis. This pathway was further stressed by dysregulations of oxygen sensor EGLN3 and of nuclear TMPO. PSF and TMPO cooperate with dopaminergic differentiation factors LMX1B and NURR1. Further dysregulations concerned PRR18, TRIO, HNRNPA1, DMWD, WAVE1, ILDR2, DBNDD1, and NFM. Thus, we report selective novel endogenous stress responses in brain, which highlight early dysregulations of mitochondrial homeostasis and midbrain vulnerability.

6.
J Parkinsons Dis ; 5(3): 595-604, 2015.
Article in English | MEDLINE | ID: mdl-26406140

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is characterized by loss of midbrain dopaminergic neurons, which are affected by cytoplasmic inclusions, named Lewy pathology. The main component is alpha-synuclein (SNCA), a protein modulating SNARE-complex dependent neurotransmission. SNCA mutations trigger dominantly inherited PD variants and sporadic cases of PD via aggregation and transmission. SNCA and isoforms of the 14-3-3 family show sequence homology, protein interaction and joint aggregation, so 14-3-3 s may be key molecules of pathogenesis. OBJECTIVE: We aimed to identify the relevant isoforms in midbrain and to distinguish for the first time the changes that occur very early versus those that progress with pathology. METHODS: We assessed expression of the 14-3-3 family with quantitative RT-PCR and immunoblots of differential solubility fractions in mice with A53T-SNCA overexpression longitudinally at different ages. RESULTS: Transcript levels showed reductions at age 3 months with increases at later ages for the beta, eta and zeta isoforms. Protein levels at age 3 months exhibited a concordant reduction only for beta, while increased insolubility was observed for epsilon and zeta. At age 18 months only the reduction of 14-3-3 beta protein remained significant. Thus, the toxic gain-of-function of alpha-synuclein leads to early transitory alterations of several 14-3-3 isoforms. When the levels of soluble 14-3-3 proteins become apparently normal during later life, increasing amounts of beta, eta and zeta mRNA are produced, possibly to compensate for protein insolubility and aggregation in a SNCA/14-3-3 complex. CONCLUSIONS: These data may contribute to identify key molecular events that reflect Parkinson's disease risk and progression.


Subject(s)
14-3-3 Proteins/metabolism , Mesencephalon/metabolism , alpha-Synuclein/metabolism , Age Factors , Animals , Mice , Mice, Transgenic , Neurons/metabolism , Protein Isoforms , RNA, Messenger/metabolism
7.
Eur J Cell Biol ; 94(3-4): 148-61, 2015.
Article in English | MEDLINE | ID: mdl-25681212

ABSTRACT

The family of lysosome-associated membrane proteins (LAMP) includes the ubiquitously expressed LAMP1 and LAMP2, which account for half of the proteins in the lysosomal membrane. Another member of the LAMP family is LAMP3, which is expressed only in certain cell types and differentiation stages. LAMP3 expression is linked with poor prognosis of certain cancers, and the locus where it is encoded was identified as a risk factor for Parkinson's disease (PD). Here, we investigated the role of LAMP3 in the two main cellular degradation pathways, the proteasome and autophagy. LAMP3 mRNA was not detected in mouse models of PD or in the brain of human patients. However, it was strongly induced upon proteasomal inhibition in the neuroblastoma cell line SH-SY5Y. Induction of LAMP3 mRNA following proteasomal inhibition was dependent on UPR transcription factor ATF4 signaling and induced autophagic flux. Prevention of LAMP3 induction enhanced apoptotic cell death. In summary, these data demonstrate that LAMP3 regulation as part of the UPR contributes to protein degradation and cell survival during proteasomal dysfunction. This link between autophagy and the proteasome may be of special importance for the treatment of tumor cells with proteasomal inhibitors.


Subject(s)
Autophagy , Lysosomal Membrane Proteins/metabolism , Neoplasm Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Activating Transcription Factor 4/metabolism , Animals , Brain/metabolism , Cell Line, Tumor , Humans , Metabolic Networks and Pathways , Mice , Parkinson Disease/metabolism
8.
Mol Neurobiol ; 52(1): 57-63, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25112678

ABSTRACT

As the second most frequent neurodegenerative disorder of the aging population, Parkinson's disease (PD) is characterized by progressive deficits in spontaneous movement, atrophy of dopaminergic midbrain neurons and aggregation of the protein alpha-synuclein (SNCA). To elucidate molecular events before irreversible cell death, we studied synucleinopathy-induced expression changes in mouse brain and identified 49 midbrain/brainstem-specific transcriptional dysregulations. In particular complexin-1 (Cplx1), Rabl2a and 14-3-3epsilon (Ywhae) downregulation, as well as upregulation of the midbrain-specific factor forkhead box P1 (Foxp1) and of Rabgef1, were interesting as early mRNA level effects of alpha-synuclein triggered pathology. The protein levels of complexin-1 were elevated in midbrain/brainstem tissue of mice with A53T-SNCA overexpression and of mice with SNCA-knockout. The response of CPLX1 and Foxp1 levels to SNCA deficiency supports the notion that these factors are regulated by altered physiological function of alpha-synuclein. Thus, their analysis might be useful in PD stages before the advent of Lewy pathology. Because both alpha-synuclein and complexin-1 modulate vesicle release, our findings support presynaptic dysfunction as an early event in PD pathology.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Brain/metabolism , Brain/pathology , Forkhead Transcription Factors/metabolism , Nerve Tissue Proteins/metabolism , Repressor Proteins/metabolism , alpha-Synuclein/metabolism , 14-3-3 Proteins/metabolism , Adaptor Proteins, Vesicular Transport/genetics , Animals , Brain Stem/metabolism , Forkhead Transcription Factors/genetics , Gene Expression Profiling , Humans , Mesencephalon/metabolism , Mice , Nerve Tissue Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Repressor Proteins/genetics , alpha-Synuclein/deficiency
9.
Hum Mol Genet ; 24(4): 1061-76, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25296918

ABSTRACT

The common age-related neurodegeneration of Parkinson's disease can result from dominant causes like increased dosage of vesicle-associated alpha-synuclein (SNCA) or recessive causes like deficiency of mitophagy factor PINK1. Interactions between these triggers and their convergence onto shared pathways are crucial, but currently conflicting evidence exists. Here, we crossed previously characterized mice with A53T-SNCA overexpression and with Pink1 deletion to generate double mutants (DMs). We studied their lifespan and behavior, histological and molecular anomalies at late and early ages. DM animals showed potentiated phenotypes in comparison with both single mutants (SMs), with reduced survival and strongly reduced spontaneous movements from the age of 3 months onwards. In contrast to SMs, a quarter of DM animals manifested progressive paralysis at ages >1 year and exhibited protein aggregates immunopositive for pSer129-SNCA, p62 and ubiquitin in spinal cord and basal brain. Brain proteome quantifications of ubiquitination sites documented altered degradation of SNCA and the DNA-damage marker H2AX at the age of 18 months. Global brain transcriptome profiles and qPCR validation experiments identified many consistent transcriptional dysregulations already at the age of 6 weeks, which were absent from SMs. The observed downregulations for Dapk1, Dcaf17, Rab42 and the novel SNCA-marker Lect1 as well as the upregulations for Dctn5, Mrpl9, Tmem181a, Xaf1 and H2afx reflect changes in ubiquitination, mitochondrial/synaptic/microtubular/cell adhesion dynamics and DNA damage. Thus, our study confirmed that SNCA-triggered neurotoxicity is exacerbated by the absence of PINK1 and identified a novel molecular signature that is detectable early in the course of this double pathology.


Subject(s)
Gene Expression , Mutation , Protein Kinases/genetics , alpha-Synuclein/genetics , Age Factors , Animals , Brain/metabolism , Brain/pathology , Computational Biology , Disease Models, Animal , Female , Gene Expression Profiling , Male , Mesencephalon/metabolism , Mesencephalon/pathology , Mice , Mice, Knockout , Motor Activity , Parkinson Disease/genetics , Parkinson Disease/mortality , Parkinson Disease/pathology , Phenotype , Protein Kinases/metabolism , Spinal Cord/metabolism , Spinal Cord/pathology , Transcriptome , alpha-Synuclein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...