Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 637-638: 865-870, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29763867

ABSTRACT

Shiga toxigenic Escherichia coli (STEC) are pathogenic E. coli that cause infectious diarrhoea. In some cases infection may be complicated by renal failure and death. The incidence of human infection with STEC in Ireland is the highest in Europe. The objective of the study was to examine the spatial incidence of human STEC infection in a region of Ireland with significantly higher rates of STEC incidence than the national average and to identify possible risk factors of STEC incidence at area level. Anonymised laboratory records (n = 379) from 2009 to 2015 were obtained from laboratories serving three counties in the West of Ireland. Data included location and sample date. Population and electoral division (ED) data were obtained from the Irish 2011 Census of Population. STEC incidence was calculated for each ED (n = 498) and used to map hotspots/coldspots using the Getis-Ord Gi* spatial statistic and significant spatial clustering using the Anselin's Local Moran's I statistic. Multivariable regression analysis was used to consider the importance of a number of potential predictors of STEC incidence. Incidence rates for the seven-year period ranged from 0 to 10.9 cases per 1000. A number of areas with significant local clustering of STEC incidence as well as variation in the spatial distribution of the two main serogroups associated with disease in the region i.e. O26 and O157 were identified. Cattle density was found to be a statistically significant predictor of STEC in the region. GIS analysis of routine data indicates that cattle density is associated STEC infection in this high incidence region. This finding points to the importance of agricultural practices for human health and the importance of a "one-health" approach to public policy in relation to agriculture, health and environment.


Subject(s)
Environmental Monitoring , Shiga-Toxigenic Escherichia coli/growth & development , Animals , Cattle , Humans , Incidence , Ireland , Shiga-Toxigenic Escherichia coli/isolation & purification , Small-Area Analysis
2.
J Infect ; 71(3): 326-37, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25982025

ABSTRACT

OBJECTIVES: Outer membrane vesicle (OMV) vaccines are used against outbreaks of capsular group B Neisseria meningitidis (MenB) caused by strains expressing particular PorA outer membrane proteins (OMPs). Ferric enterobactin receptor (FetA) is another variable OMP that induces type-specific bactericidal antibodies, and the combination of judiciously chosen PorA and FetA variants in vaccine formulations is a potential approach to broaden protection of such vaccines. METHODS: The OMV vaccine MenPF-1 was generated by genetically modifying N. meningitidis strain 44/76 to constitutively express FetA. Three doses of 25 µg or 50 µg of MenPF-1 were delivered intra-muscularly to 52 healthy adults. RESULTS: MenPF-1 was safe and well tolerated. Immunogenicity was measured by serum bactericidal assay (SBA) against wild-type and isogenic mutant strains. After 3 doses, the proportion of volunteers with SBA titres ≥1:4 (the putative protective titre) was 98% for the wild-type strain, and 77% for the strain 44/76 FetA(on)PorA(off) compared to 51% in the strain 44/76 FetA(off)PorA(off), demonstrating that vaccination with MenPF-1 simultaneously induced FetA and PorA bactericidal antibodies. CONCLUSION: This study provides a proof-of-concept for generating bactericidal antibodies against FetA after OMV vaccination in humans. Prevalence-based choice of PorA and FetA types can be used to formulate a vaccine for broad protection against MenB disease.


Subject(s)
Bacterial Outer Membrane Proteins/genetics , Carrier Proteins/genetics , Carrier Proteins/immunology , Meningococcal Vaccines/administration & dosage , Neisseria meningitidis, Serogroup B/genetics , Neisseria meningitidis, Serogroup B/immunology , Porins/immunology , Receptors, Cell Surface/genetics , Receptors, Cell Surface/immunology , Adolescent , Adult , Antibodies, Bacterial/blood , Bacterial Outer Membrane Proteins/administration & dosage , Bacterial Outer Membrane Proteins/immunology , Carrier Proteins/administration & dosage , Female , Humans , Male , Meningococcal Vaccines/adverse effects , Meningococcal Vaccines/immunology , Middle Aged , Molecular Epidemiology , Porins/genetics , Receptors, Cell Surface/administration & dosage , Serum Bactericidal Antibody Assay , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...