Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Cent Sci ; 10(4): 907-919, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38680557

ABSTRACT

The response of an oxide crystal to the atmosphere can be personified as breathing-a dynamic equilibrium between O2 gas and O2- anions in the solid. We characterize the analogous defect reaction in an iodide double-perovskite semiconductor, Cs2SnI6. Here, I2 gas is released from the crystal at room temperature, forming iodine vacancies. The iodine vacancy defect is a shallow electron donor and is therefore ionized at room temperature; thus, the loss of I2 is accompanied by spontaneous n-type self-doping. Conversely, at high I2 pressures, I2 gas is resorbed by the perovskite, consuming excess electrons as I2 is converted to 2I-. Halide mobility and irreversible halide loss or exchange reactions have been studied extensively in halide perovskites. However, the reversible exchange equilibrium between iodide and iodine [2I-(s) ↔ I2(g) + 2e-] described here has often been overlooked in prior studies, though it is likely general to halide perovskites and operative near room temperature, even in the dark. An analysis of the 2I-(s)/I2(g) equilibrium thermodynamics and related transport kinetics in single crystals of Cs2SnI6 therefore provides insight toward achieving stable composition and electronic properties in the large family of iodide perovskite semiconductors.

2.
Angew Chem Int Ed Engl ; 61(25): e202202911, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35421260

ABSTRACT

As halide perovskites and their derivatives are being developed for numerous optoelectronic applications, controlling their electronic doping remains a fundamental challenge. Herein, we describe a novel strategy of using redox-active organic molecules as stoichiometric electron acceptors. The cavities in the new expanded perovskite analogs (dmpz)[Sn2 X6 ], (X=Br- (1Br) and I- (1I)) are occupied by dmpz2+ (N,N'-dimethylpyrazinium), with the LUMOs lying ca. 1 eV above the valence band maximum (VBM). Compressing the metal-halide framework drives up the VBM in 1I relative to the dmpz LUMO. The electronic conductivity increases by a factor of 105 with pressure, reaching 50(17) S cm-1 at 60 GPa, exceeding the high-pressure conductivities of most halide perovskites. This conductivity enhancement is attributed to an increased hole density created by dmpz2+ reduction. This work elevates the role of organic cations in 3D metal-halides, from templating the structure to serving as charge reservoirs for tuning the carrier concentration.

SELECTION OF CITATIONS
SEARCH DETAIL
...