Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 115(48): 12112-12117, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30409800

ABSTRACT

Phytoplankton often encounter turbulence in their habitat. As most toxic phytoplankton species are motile, resolving the interplay of motility and turbulence has fundamental repercussions on our understanding of their own ecology and of the entire ecosystems they inhabit. The spatial distribution of motile phytoplankton cells exhibits patchiness at distances of decimeter to millimeter scales for numerous species with different motility strategies. The explanation of this general phenomenon remains challenging. Furthermore, hydrodynamic cell-cell interactions, which grow more relevant as the density in the patches increases, have been so far ignored. Here, we combine particle simulations and continuum theory to study the emergence of patchiness in motile microorganisms in three dimensions. By addressing the combined effects of motility, cell-cell interaction, and turbulent flow conditions, we uncover a general mechanism: The coupling of cell-cell interactions to the turbulent dynamics favors the formation of dense patches. Identification of the important length and time scales, independent from the motility mode, allows us to elucidate a general physical mechanism underpinning the emergence of patchiness. Our results shed light on the dynamical characteristics necessary for the formation of patchiness and complement current efforts to unravel planktonic ecological interactions.


Subject(s)
Ecosystem , Lakes/chemistry , Phytoplankton/physiology , Hydrodynamics , Models, Biological , Phytoplankton/growth & development , Water Movements
2.
Phys Rev E ; 93(2): 022410, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26986365

ABSTRACT

Chiral symmetry breaking is ubiquitous in biological systems, from DNA to bacterial suspensions. A key unresolved problem is how chiral structures may spontaneously emerge from achiral interactions. We study a simple model of active swimmers in three dimensions that effectively incorporates hydrodynamic interactions. We perform large-scale molecular dynamics simulations (up to 10(6) particles) and find long-lived metastable collective states that exhibit chiral organization although the interactions are achiral. We elucidate under which conditions these chiral states will emerge and grow to large scales. To explore the complex phase space available to the system, we perform nonequilibrium quenches on a one-dimensional Lebwohl-Lasher model with periodic boundary conditions to study the likelihood of formation of chiral structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...