Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Chem ; 382(8): 1263-70, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11592408

ABSTRACT

Asp83 is a highly conserved residue in the second transmembrane domain of visual pigments and many members of other G protein-coupled receptor subfamilies. Upon illumination, the rod visual pigment rhodopsin proceeds through various intermediate states (Batho<-->BSI<-->Lumi<-->Meta I<-->Meta II). Meta II represents the active state of rhodopsin, which binds and activates the G protein transducin. Evidence has been presented that Asp83 participates in the formation of Meta II and undergoes a change in H-bonding. To investigate whether this role of Asp83 requires its proton-donating capacity and/or its H-bonding capability, we constructed the mutants D83C and D83N. Both mutants appear to effectively activate transducin, indicating that Asp83 is not essential for signal transduction. Differential effects of the mutations D83C and D83N are observed in the spectral properties and the pH sensitivity of the Meta I-->Meta II transition. In general, D83C behaves much more like wild-type than D83N. We conclude that the structural role of Asp83 also involves the acidic nature of its carboxyl group. In addition, the participation in Meta II formation of Cys83 in D83C manifests itself as a change in the vibrational properties of the sulfhydryl group, demonstrating that the -SH group can be used as a non-invasive probe for local structural changes.


Subject(s)
Aspartic Acid , Rhodopsin/chemistry , Rhodopsin/metabolism , Amino Acid Sequence , GTP-Binding Proteins/metabolism , Hydrogen Bonding , Molecular Sequence Data , Osmolar Concentration , Photochemistry , Point Mutation , Protein Conformation , Protein Folding , Rhodopsin/genetics , Spectroscopy, Fourier Transform Infrared
2.
Biochim Biophys Acta ; 1539(3): 243-55, 2001 Jun 20.
Article in English | MEDLINE | ID: mdl-11420122

ABSTRACT

Store-regulated Ca(2+) entry (SOCE) is an important mechanism of elevating cytosolic [Ca(2+)]i in platelets, though the Ca(2+) influx channels involved are still unclear. We screened human platelets and their precursor cells (human stem cells and megakaryocytes) for the presence of candidate influx channels, i.e., isoforms of the Trp family of proteins. Primary stem cells were cultured with thrombopoietin to allow differentiation into megakaryocytes. The undifferentiated stem cells (CD34(+)) showed mRNA expression of only a spliced variant Trp1A. Immature (CD61(+)/CD42b(low)) and mature (CD61(+)/CD42b(high)) megakaryocytes as well as platelets expressed in addition unspliced Trp1 as well as Trp4 (less abundant) and Trp6 isoforms. This unspliced isoform appeared to be specific for cells of the megakaryocyte/platelet lineage, since immature (CD14(+)/CD61(-)/CD42b(-)) and mature monocytes expressed only the Trp1A isoform. This conclusion was confirmed by the presence of Trp1A, 3, 4 and 6 transcripts in the immature megakaryocytic Dami cell line, and of Trp1, 1A, 4 and 6 transcripts in the more mature CHRF-288 cell line. The up-regulation of Trp1, 4 and 6 in the lineage from primary stem cells to mature megakaryocytes and platelets was accompanied by increased influx of extracellular Ca(2+) after pretreatment of the cells with thapsigargin or thrombin. Expression of new Trp isoforms in the differentiated cells is thus accompanied by increased SOCE.


Subject(s)
Blood Platelets/cytology , Calcium Channels/metabolism , Calcium/metabolism , Cell Differentiation/physiology , Stem Cells/cytology , Biological Transport/drug effects , Blood Platelets/metabolism , Calcium Channels/genetics , Humans , In Vitro Techniques , Megakaryocytes/metabolism , Protein Isoforms , RNA, Messenger/metabolism , Sequence Analysis, DNA , Stem Cells/metabolism , TRPC Cation Channels , Thrombopoietin/metabolism
3.
Thromb Haemost ; 81(5): 782-92, 1999 May.
Article in English | MEDLINE | ID: mdl-10365754

ABSTRACT

Various collagen-based materials were used to assess the structural requirements of collagen for inducing the procoagulant response of adhering platelets, as well as the collagen receptors involved. Cross-linked or monomeric collagen-related peptide (CRP), Gly-Cys-Hyp-(Gly-Pro-Hyp)10-Gly-Cys-Hyp-Gly was highly adhesive for platelets in a glycoprotein VI-(GpVI-)dependent manner. Adhesion was followed by a prolonged increase in cytosolic [Ca2+]i, formation of membrane blebs, exposure of phosphatidylserine (PS) and generation of prothrombinase-stimulating activity. Fibrils of type-I collagen were less adhesive but, once adhered, many of the platelets presented a full procoagulant response. Monomeric type-I collagen was unable to support adhesion, unless Mg(2+)-dependent integrin alpha2beta1 interactions were facilitated by omission of Ca2+ ions. With all surfaces, however, post-addition of CaCl2 to adhering platelets resulted in a potent Ca(2+)-influx signal, followed by PS exposure and bleb formation. The procoagulant response elicited by binding to CRP was inhibited by anti-GpVI Fab fragments, but not by impeding integrin alpha2beta1-mediated events. With fibrillar collagen, it was inhibited by blocking either the GpVI- or integrin alpha2beta1-mediated interactions. This suggests that the triple-helical Gly-Pro-Hyp repeat in CRP and analogous sequences in fibrillar collagen stimulate the procoagulant response of adherent platelets by acting as ligands for GpVI. Influx of Ca2+ is required for this response, and adhesion via integrin alpha2beta1 serves to potentiate the signaling effects of GpVI.


Subject(s)
Blood Platelets/physiology , Integrins/physiology , Platelet Adhesiveness , Platelet Membrane Glycoproteins/physiology , Binding Sites/genetics , Blood Coagulation , Blood Platelets/cytology , Collagen , Humans , Microscopy, Confocal , Receptors, Collagen
SELECTION OF CITATIONS
SEARCH DETAIL
...