Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 19(4): 277-86, 2009 Feb 24.
Article in English | MEDLINE | ID: mdl-19217293

ABSTRACT

BACKGROUND: Apicomplexans contain only a core set of factors involved in vesicular traffic. Yet these obligate intracellular parasites evolved a set of unique secretory organelles (micronemes, rhoptries, and dense granules) that are required for invasion and modulation of the host cell. Apicomplexa replicate by budding from or within a single mother cell, and secretory organelles are synthesized de novo at the final stage of division. To date, the molecular basis for their biogenesis is unknown. RESULTS: We demonstrate that the apicomplexan dynamin-related protein B (DrpB) belongs to an alveolate specific family of dynamins that is expanded in ciliates. DrpB accumulates in a cytoplasmic region close to the Golgi that breaks up during replication and reforms after assembly of the daughter cells. Conditional ablation of DrpB function results in mature daughter parasites that are devoid of micronemes and rhoptries. In the absence of these organelles, invasion-related secretory proteins are mistargeted to the constitutive secretory pathway. Mutant parasites are able to replicate but are unable to escape from or invade into host cells. CONCLUSIONS: DrpB is the essential mechanoenzyme for the biogenesis of secretory organelles in Apicomplexa. We suggest that DrpB is required during replication to generate vesicles for the regulated secretory pathway that form the unique secretory organelles. Our study supports a role of an alveolate-specific dynamin that was required for the evolution of novel, secretory organelles. In the case of Apicomplexa, these organelles further evolved to enable a parasitic lifestyle.


Subject(s)
Organelles/metabolism , Protozoan Proteins/metabolism , Secretory Pathway/physiology , Toxoplasma , Animals , Cells, Cultured , Dynamins/genetics , Dynamins/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Organelles/ultrastructure , Phylogeny , Protozoan Proteins/classification , Protozoan Proteins/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Toxoplasma/metabolism , Toxoplasma/ultrastructure
2.
Curr Opin Microbiol ; 10(4): 349-56, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17826309

ABSTRACT

The recent awarding of the Nobel prize to Andrew Fire and Craig Mello for the discovery of RNA-interference (RNAi) in plants once more demonstrated the importance of basic science in understanding biological mechanisms. Importantly, this discovery led to the establishment of powerful approaches to study gene function in a wide array of organisms. While a robust RNAi-technology remains elusive in apicomplexan parasites, other molecular genetic technologies have been introduced in recent years. Now, in the post genomic era, the task is to apply these methods to validate and functionally dissect an ever-expanding list of putative vaccine and drug candidates. The ultimate aim of such studies is to transform our knowledge of the genome to the knowledge of the phenome and ultimately new intervention strategies in these important pathogenic organisms. However, substantial limitations remain to the current repertoire of available molecular tools, which limits a comprehensive analysis of these candidates, especially of essential genes. This review summarises the methodologies available for functional gene analysis in apicomplexan parasites and discusses further needs in tool development.


Subject(s)
Molecular Biology/methods , Plasmodium/genetics , Toxoplasma/genetics , Animals , Genes, Protozoan
SELECTION OF CITATIONS
SEARCH DETAIL
...