Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 13(20)2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34680215

ABSTRACT

Adult T-cell leukemia/lymphoma (ATL) is an intractable disease affecting nearly 4% of Human T-cell Leukemia Virus Type 1 (HTLV-1) carriers. Acute ATL has a unique interaction with bone characterized by aggressive bone invasion, osteolytic metastasis, and hypercalcemia. We hypothesized that dual tumor and bone-targeted therapies would decrease tumor burden in bone, the incidence of metastasis, and ATL-associated osteolysis. Our goal was to evaluate dual targeting of both ATL bone tumors and the bone microenvironment using an anti-tumor HDACi (AR-42) and an osteoclast inhibitor (zoledronic acid, Zol), alone and in combination. Our results showed that AR-42, Zol, and AR-42/Zol significantly decreased the viability of multiple ATL cancer cell lines in vitro. Zol and AR-42/Zol decreased tumor growth in vivo. Zol ± AR-42 significantly decreased ATL-associated bone resorption and promoted new bone formation. AR-42-treated ATL cells had increased mRNA levels of PTHrP, ENPP2 (autotaxin) and MIP-1α, and TAX viral gene expression. AR-42 alone had no significant effect on tumor growth or osteolysis in mice. These findings indicate that Zol adjuvant therapy has the potential to reduce growth of ATL in bone and its associated osteolysis.

2.
BMC Vet Res ; 17(1): 320, 2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34600548

ABSTRACT

BACKGROUND: Urothelial carcinoma (UC) accounts for > 90% of canine tumors occurring in the urinary bladder. Toceranib phosphate (TOC) is a multi-target receptor tyrosine kinase (RTK) inhibitor that exhibits activity against members of the split kinase family of RTKs. The purpose of this study was to evaluate primary UC tumors and UC cell lines for the expression and activation of VEGFR2, PDGFRα, PDGFRß, and KIT to assess whether dysregulation of these RTKs may contribute to the observed biological activity of TOC. RESULTS: Transcript for VEGFR2, PDGFRα, PDGFRß, and KIT was detected in all UC tissue samples and UC cell lines. The Proteome Profiler™ Human Phospho-RTK Array Kit (R & D Systems) provided a platform to assess phosphorylation of 42 different RTKs in primary UC tumors and UC cell lines. Evidence of PDGFRα and PDGFRß phosphorylation was present in only 11% or 33% of UC tumors, respectively, and 25% of UC cell lines. Treatment of UC cell lines with TOC had no significant impact on cell proliferation, including UC cell lines with evidence of PDGFRß phosphorylation. CONCLUSIONS: Phosphorylation of several key RTKs targeted by TOC is present in a small subset of primary UC tumors and UC cell lines, suggesting that these RTKs do not exist in a state of continuous activation. These data suggest that activation of RTKs targeted by TOC is present in a small subset of UC tumors and UC cell lines and that treatment with TOC at physiologically relevant concentrations has no direct anti-proliferative effect on UC cells.


Subject(s)
Carcinoma, Transitional Cell/veterinary , Indoles/pharmacology , Pyrroles/pharmacology , Receptor Protein-Tyrosine Kinases/metabolism , Urinary Bladder Neoplasms/veterinary , Animals , Carcinoma, Transitional Cell/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Dog Diseases/drug therapy , Dog Diseases/metabolism , Dogs , Female , Male , Receptor Protein-Tyrosine Kinases/genetics , Urinary Bladder Neoplasms/metabolism
3.
Vet Comp Oncol ; 19(2): 362-373, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33438820

ABSTRACT

Verdinexor (KPT-335) is a novel orally bioavailable selective inhibitor of nuclear export (SINE) compound that inhibits the function of the nuclear export protein Exportin 1 (XPO1/CRM1). In the present study, we sought to characterize the expression of XPO1 in primary canine osteosarcoma (OS) tumour samples, OS cell lines and normal osteoblasts and evaluate the in vitro activity of verdinexor alone or in combination with doxorubicin. Canine OS cell lines and a subset of primary OS tumours showed increased XPO1 transcript and protein expression as compared with normal canine osteoblast cells. All canine OS cell lines exhibited dose-dependent growth inhibition and increased caspase 3,7 activity in response to low nanomolar concentrations of verdinexor (IC50 concentrations ranging from 21 to 74 nM). Notably, growth inhibition of normal canine osteoblast cell lines treated with verdinexor was observed at high micromolar concentrations (IC50  = 21 µM). The combination of verdinexor and doxorubicin resulted in potent inhibition of cell viability and demonstrated synergetic activity in three canine OS cell lines. Concordantly, OS cell lines showed increased γH2A.X foci following treatment with doxorubicin and recovery in verdinexor compared with cells treated with doxorubicin and recovered in normal media for 24 hours. These findings demonstrate that verdinexor has biologic activity against canine OS cell lines at physiologically relevant doses and suggest that XPO1 inhibition in combination with standard doxorubicin treatment offers promising potential for chemotherapeutic intervention in canine OS.


Subject(s)
Biological Products , Dog Diseases , Osteosarcoma , Acrylamides , Active Transport, Cell Nucleus , Animals , Cell Line, Tumor , Dog Diseases/drug therapy , Dogs , Doxorubicin/pharmacology , Hydrazines , Osteosarcoma/drug therapy , Osteosarcoma/veterinary
4.
Leuk Lymphoma ; 61(2): 409-419, 2020 02.
Article in English | MEDLINE | ID: mdl-31592701

ABSTRACT

Parathyroid hormone-related protein (PTHrP) and macrophage inflammatory protein-1α (MIP-1α) are important factors that increase bone resorption and hypercalcemia in adult T-cell leukemia (ATL). We investigated the role of PTHrP and MIP-1α in the development of local osteolytic lesions in T-cell leukemia through overexpression in Jurkat T-cells. Injections of Jurkat-PTHrP and Jurkat-MIP-1α into the tibia and the left ventricle of NSG mice were performed to evaluate tumor growth and metastasis in vivo. Jurkat-pcDNA tibial neoplasms grew at a significantly greater rate and total tibial tumor burden was significantly greater than Jurkat-PTHrP neoplasms. Despite the lower tibial tumor burden, Jurkat-PTHrP bone neoplasms had significantly greater osteolysis than Jurkat-pcDNA and Jurkat-MIP-1α neoplasms. Jurkat-PTHrP and Jurkat-pcDNA cells preferentially metastasized to bone following intracardiac injection, though the overall metastatic burden was lower in Jurkat-PTHrP mice. These findings demonstrate that PTHrP induced pathologic osteolysis in T-cell leukemia but did not increase the incidence of skeletal metastasis.


Subject(s)
Bone Neoplasms , Hypercalcemia , Leukemia-Lymphoma, Adult T-Cell , Osteolysis , Adult , Animals , Humans , Hypercalcemia/etiology , Mice , Osteolysis/etiology , Parathyroid Hormone-Related Protein/genetics
5.
Blood Adv ; 3(3): 242-255, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30692102

ABSTRACT

Treatment options for acute myeloid leukemia (AML) remain extremely limited and associated with significant toxicity. Nicotinamide phosphoribosyltransferase (NAMPT) is involved in the generation of NAD+ and a potential therapeutic target in AML. We evaluated the effect of KPT-9274, a p21-activated kinase 4/NAMPT inhibitor that possesses a unique NAMPT-binding profile based on in silico modeling compared with earlier compounds pursued against this target. KPT-9274 elicited loss of mitochondrial respiration and glycolysis and induced apoptosis in AML subtypes independent of mutations and genomic abnormalities. These actions occurred mainly through the depletion of NAD+, whereas genetic knockdown of p21-activated kinase 4 did not induce cytotoxicity in AML cell lines or influence the cytotoxic effect of KPT-9274. KPT-9274 exposure reduced colony formation, increased blast differentiation, and diminished the frequency of leukemia-initiating cells from primary AML samples; KPT-9274 was minimally cytotoxic toward normal hematopoietic or immune cells. In addition, KPT-9274 improved overall survival in vivo in 2 different mouse models of AML and reduced tumor development in a patient-derived xenograft model of AML. Overall, KPT-9274 exhibited broad preclinical activity across a variety of AML subtypes and warrants further investigation as a potential therapeutic agent for AML.


Subject(s)
Acrylamides/pharmacology , Aminopyridines/pharmacology , Cytokines/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Animals , Apoptosis/drug effects , Cell Line, Tumor , Enzyme Inhibitors/pharmacology , HL-60 Cells , Humans , K562 Cells , Leukemia, Myeloid, Acute/enzymology , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Xenograft Model Antitumor Assays
6.
Vet Sci ; 4(2)2017 Apr 13.
Article in English | MEDLINE | ID: mdl-29056680

ABSTRACT

Cancer-associated hypercalcemia (CAH) is a frequently-occurring paraneoplastic syndrome that contributes to substantial patient morbidity and occurs in both humans and animals. Patients with CAH are often characterized by markedly elevated serum calcium concentrations that result in a range of clinical symptoms involving the nervous, gastrointestinal and urinary systems. CAH is caused by two principle mechanisms; humorally-mediated and/or through local osteolytic bone metastasis resulting in excessive calcium release from resorbed bone. Humoral hypercalcemia of malignancy (HHM) is the most common mechanism and is due to the production and release of tumor-associated cytokines and humoral factors, such as parathyroid hormone-related protein (PTHrP), that act at distant sites to increase serum calcium concentrations. Local osteolytic hypercalcemia (LOH) occurs when primary or metastatic bone tumors act locally by releasing factors that stimulate osteoclast activity and bone resorption. LOH is a less frequent cause of CAH and in some cases can induce hypercalcemia in concert with HHM. Rarely, ectopic production of parathyroid hormone has been described. PTHrP-mediated hypercalcemia is the most common mechanism of CAH in human and canine malignancies and is recognized in other domestic species. Spontaneous and experimentally-induced animal models have been developed to study the mechanisms of CAH. These models have been essential for the evaluation of novel approaches and adjuvant therapies to manage CAH. This review will highlight the comparative aspects of CAH in humans and animals with a discussion of the available animal models used to study the pathogenesis of this important clinical syndrome.

SELECTION OF CITATIONS
SEARCH DETAIL
...