Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Opt Express ; 11(4): 2254-2267, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32341881

ABSTRACT

In view of minimally-invasive clinical interventions, laser tissue soldering assisted by plasmonic nanoparticles is emerging as an appealing concept in surgical medicine, holding the promise of surgeries without sutures. Rigorous monitoring of the plasmonically-heated solder and the underlying tissue is crucial for optimizing the soldering bonding strength and minimizing the photothermal damage. To this end, we propose a non-invasive, non-contact, and non-ionizing modality for monitoring nanoparticle-assisted laser-tissue interaction and visualizing the localized photothermal damage, by taking advantage of the unique sensitivity of terahertz radiation to the hydration level of biological tissue. We demonstrate that terahertz radiation can be employed as a versatile tool to reveal the thermally-affected evolution in tissue, and to quantitatively characterize the photothermal damage induced by nanoparticle-assisted laser tissue soldering in three dimensions. Our approach can be easily extended and applied across a broad range of clinical applications involving laser-tissue interaction, such as laser ablation and photothermal therapies.

2.
Opt Express ; 26(4): 4448-4458, 2018 Feb 19.
Article in English | MEDLINE | ID: mdl-29475295

ABSTRACT

Nonlinear interactions are commonly used to access to wavelengths not covered by standard laser systems. In particular, optical parametric amplification (OPA) is a powerful technique to produce broadly tunable light. However, common implementations of OPA suffer from a well-known trade-off, either achieving high efficiency for narrow spectra or inefficient conversion over a broad bandwidth. This shortcoming can be addressed using adiabatic processes. Here, we demonstrate a novel technique towards this direction, based on a temperature-controlled phase mismatch between the interacting waves. Using this approach, we demonstrate, by tailoring the temperature profile, an increase in conversion efficiency by 21%, reaching a maximum of 57%, while simultaneously expanding the bandwidth to over 300 nm. Our technique can readily enhance the performances of current OPA systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...