Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Sleep ; 47(2)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38124288

ABSTRACT

STUDY OBJECTIVES: Voluntary sleep restriction is a common phenomenon in industrialized societies aiming to increase time spent awake and thus productivity. We explored how restricting sleep to a radically polyphasic schedule affects neural, cognitive, and endocrine characteristics. METHODS: Ten young healthy participants were restricted to one 20-minute nap opportunity at the end of every 4 hours (i.e. six sleep episodes per 24 hours) without any extended core sleep window, which resulted in a cumulative sleep amount of just 2 hours per day (i.e. ~20 minutes per bout). RESULTS: All but one participant terminated this schedule during the first month. The remaining participant (a 25-year-old male) succeeded in adhering to a polyphasic schedule for five out of the eight planned weeks. Cognitive and psychiatric measures showed modest changes during polyphasic as compared to monophasic sleep, while in-blood cortisol or melatonin release patterns and amounts were apparently unaltered. In contrast, growth hormone release was almost entirely abolished (>95% decrease), with the residual release showing a considerably changed polyphasic secretional pattern. CONCLUSIONS: Even though the study was initiated by volunteers with exceptional intrinsic motivation and commitment, none of them could tolerate the intended 8 weeks of the polyphasic schedule. Considering the decreased vigilance, abolished growth hormone release, and neurophysiological sleep changes observed, it is doubtful that radically polyphasic sleep schedules can subserve the different functions of sleep to a sufficient degree.


Subject(s)
Human Growth Hormone , Male , Humans , Adult , Polysomnography , Sleep/physiology , Wakefulness/physiology , Growth Hormone
2.
Schizophr Res ; 191: 5-9, 2018 01.
Article in English | MEDLINE | ID: mdl-28927552

ABSTRACT

BACKGROUND: Patients with schizophrenia (SZ) have impairments in processing auditory information that have been linked to deficits in cognitive and psychosocial functioning. Dysfunction in auditory sensory processing in SZ has been indexed by mismatch negativity (MMN), an event-related potential evoked by a rare, deviant stimulus embedded within a sequence of identical standard stimuli. Although MMN deficits in SZ have been studied extensively, relatively little is known about how these deficits relate to accurately identifying real-world, ecologically-salient sounds. METHODS: MMN was assessed in SZ patients (n=21) and non-psychiatric comparison subjects (NCS; n=16). Participants were also assessed in their ability to identify common environmental sounds using a subset of 80 sound clips from the International Affective Digitized Sounds 2nd Ed collection. RESULTS: SZ patients made significantly more errors in environmental sound identification (p<0.001, d=0.86) and showed significantly reduced MMN amplitude deficits in MMN compared to NCS (p<0.01, d=0.97). In SZ patients, MMN deficits were associated with significantly greater environmental sound identification errors (r=0.61, p<0.01). CONCLUSIONS: Impairments in early auditory information processing in schizophrenia account for significant proportions of variance in the ability to identify real-world, functionally relevant environmental sounds. This study supports the view that interventions targeting deficits in low-level auditory sensory processing may also impact more complex cognitive brain processes relevant to psychosocial disability.


Subject(s)
Contingent Negative Variation/physiology , Environment , Evoked Potentials, Auditory/physiology , Schizophrenia/physiopathology , Schizophrenic Psychology , Acoustic Stimulation , Adult , Arousal , Electroencephalography , Emotions/physiology , Female , Humans , Male , Middle Aged , Psychiatric Status Rating Scales , Statistics as Topic
3.
J Psychiatr Res ; 73: 86-95, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26704739

ABSTRACT

P-glycoprotein, encoded by the ABCB1 gene, functions as an ATP-driven efflux pump in the blood-brain barrier, extruding its substrates and thereby limiting their passage into the brain. ABCB1 polymorphisms predicted antidepressant drug response: Minor allele carriers of SNPs rs2032583 and rs2235015 had higher remission rates than major allele homozygotes. The aim of the current study was to evaluate an ABCB1 genotype-dependent efficacy of a quick dose escalation strategy. Depressed inpatients (n = 73) treated with antidepressants that are P-glycoprotein substrates were randomly assigned to a standard or high dose condition for 28 days. HAM-D scores, adverse effects and plasma antidepressant concentration were measured weekly and tested among two intronic SNPs rs2032583 and rs2235015. A treatment as usual control sample (n = 128) was retrospectively matched to the study group by gender, age, and diagnosis. There was a significant interaction of genotype x plasma antidepressant concentration: Minor allele carriers of rs2032583 [F(1,65) = 7.221, p = 0.009] and rs2235015 [F(1,65) = 4.939, p = 0.030] whose plasma drug concentration were within recommended range had a greater symptom reduction at study endpoint which exceeded the therapeutic benefit of the treatment as usual group [for rs2032583: F(1,163) = 4.366, p = 0.038]. Minor allele carriers of rs2032583 with high plasma drug levels had more sleep-related side effects than major allele homozygotes with high plasma drug levels. The treatment of MDD can be optimized by ABCB1 genotyping combined with monitoring of plasma drug concentrations: For minor allele carriers of rs2032583 and rs2235015, plasma antidepressant levels should not exceed the recommended range in order to obtain optimal treatment outcome.


Subject(s)
Antidepressive Agents/blood , Antidepressive Agents/therapeutic use , Depression , Polymorphism, Single Nucleotide/genetics , ATP Binding Cassette Transporter, Subfamily B/genetics , Adult , Alleles , Analysis of Variance , Chromatography, High Pressure Liquid , Depression/blood , Depression/drug therapy , Depression/genetics , Dose-Response Relationship, Drug , Double-Blind Method , Female , Follow-Up Studies , Genotype , Humans , Male , Middle Aged , Pharmacogenetics , Psychiatric Status Rating Scales , Tandem Mass Spectrometry , Time Factors , Treatment Outcome
4.
Am J Med Genet B Neuropsychiatr Genet ; 168B(4): 274-83, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25847751

ABSTRACT

The efflux pump P-glycoprotein (P-gp), a gene product of the ABCB1 gene, plays a pivotal role in the transfer of various molecules across the blood-brain barrier. P-gp protects the brain by selectively extruding its substrates, including certain antidepressive drugs, thereby limiting their uptake into the brain. Uhr et al. [2008] first showed that ABCB1 variants predicted the remission to antidepressants with P-gp substrate properties in patients suffering from major depression (MD). Other studies investigating the influence of ABCB1 polymorphisms on antidepressant treatment response produced inconclusive results. In this meta-analysis, we systematically summarized 16 pharmacogenetic studies focused on the association of ABCB1 variants and antidepressant treatment outcome in patients with MD (overall n = 2695). We investigated the association of treatment outcome and six ABCB1 single nucleotide polymorphisms (SNPs): rs2032583, rs2235015, rs2235040, rs1045642, rs2032582, rs1128503. We stratified for admission status, ethnicity, and prescription of concomitant medication. SNP rs2032583 showed a nominally significant association across all studies (P = 0.035, SNP was studied in a total of 2,037 patients) and a significant Bonferroni-corrected association among inpatients (P = 1.5 × 10(-05) , n = 485). Also SNP rs2235015 was significantly associated with antidepressant treatment outcome withstanding Bonferroni correction (P = 3.0 × 10(-04) ) among inpatients in a smaller subsample (n = 195). There were no significant associations of the other SNPs tested with antidepressant treatment outcome. Future pharmacogenetic association studies should focus on the role of the ABCB1 SNP rs2032583 in antidepressant outcome prediction.


Subject(s)
Antidepressive Agents/therapeutic use , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/genetics , Polymorphism, Single Nucleotide/genetics , ATP Binding Cassette Transporter, Subfamily B/genetics , Genetic Association Studies , Haplotypes/genetics , Humans , Linkage Disequilibrium/genetics , Sample Size
5.
Drug Discov Today ; 19(5): 539-61, 2014 May.
Article in English | MEDLINE | ID: mdl-24561326

ABSTRACT

During the past decades, the prevalence of affective disorders has been on the rise globally, with only one out of three patients achieving remission in acute treatment with antidepressants. The identification of physiological markers that predict treatment course proves useful in increasing therapeutic success. On the basis of well-documented, recent findings in depression research, we highlight and discuss the most promising biomarkers for antidepressant therapy response. These include genetic variants and gene expression profiles, proteomic and metabolomic markers, neuroendocrine function tests, electrophysiology and imaging techniques. Ultimately, this review proposes an integrative use of biomarkers for antidepressant treatment outcome.


Subject(s)
Antidepressive Agents/therapeutic use , Depression/genetics , Depression/metabolism , Genetic Variation/genetics , Animals , Biomarkers/metabolism , Depression/drug therapy , Genetic Markers/genetics , Humans , Treatment Outcome
6.
CNS Spectr ; 19(2): 165-75, 2014 Apr.
Article in English | MEDLINE | ID: mdl-23880209

ABSTRACT

BACKGROUND: The gene product of the ABCB1 gene, the P-glycoprotein, functions as a custodian molecule in the blood-brain barrier and regulates the access of most antidepressants into the brain. Previous studies showed that ABCB1 polymorphisms predicted the response to antidepressants that are substrates of the P-gp, while the response to nonsubstrates was not influenced by ABCB1 polymorphisms. The aim of the present study was to evaluate the clinical application of ABCB1 genotyping in antidepressant pharmacotherapy. METHODS: Data came from 58 depressed inpatients participating in the Munich Antidepressant Response Signature (MARS) project, whose ABCB1 gene test results were implemented into the clinical decision making process. Hamilton Depression Rating Scale (HAM-D) scores, remission rates, and duration of hospital stay were documented with dose and kind of antidepressant treatment. RESULTS: Patients who received ABCB1 genotyping had higher remission rates [χ2(1) = 6.596, p = 0.005, 1-sided] and lower Hamilton sores [t(111) = 2.091, p = 0.0195, 1-sided] at the time of discharge from hospital as compared to patients without ABCB1 testing. Among major allele homozygotes for ABCB1 single nucleotide polymorphisms (SNPs) rs2032583 and rs2235015 (TT/GG genotype), an increase in dose was associated with a shorter duration of hospital stay [rho(28) = -0.441, p = 0.009, 1-sided], whereas other treatment strategies (eg, switching to a nonsubstrate) showed no significant associations with better treatment outcome. Discussion The implementation of ABCB1 genotyping as a diagnostic tool influenced clinical decisions and led to an improvement of treatment outcome. Patients carrying the TT/GG genotype seemed to benefit from an increase in P-gp substrate dose. CONCLUSION: Results suggest that antidepressant treatment of depression can be optimized by the clinical application of ABCB1 genotyping.


Subject(s)
ATP Binding Cassette Transporter 1/genetics , Antidepressive Agents/therapeutic use , Depression/drug therapy , Depression/genetics , Pharmacogenetics , Polymorphism, Single Nucleotide/genetics , Adult , Aged , Chi-Square Distribution , Female , Genetic Association Studies , Genotype , Humans , Male , Middle Aged , Pilot Projects , Psychiatric Status Rating Scales , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...