Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Biochem Pharmacol ; 211: 115504, 2023 05.
Article in English | MEDLINE | ID: mdl-36921634

ABSTRACT

Integrins are a family of cell surface receptors well-recognized for their therapeutic potential in a wide range of diseases. However, the development of integrin targeting medications has been impacted by unexpected downstream effects, reflecting originally unforeseen interference with the bidirectional signalling and cross-communication of integrins. We here selected one of the most severely affected target integrins, the integrin lymphocyte function-associated antigen-1 (LFA-1, αLß2, CD11a/CD18), as a prototypic integrin to systematically assess and overcome these known shortcomings. We employed a two-tiered ligand-based virtual screening approach to identify a novel class of allosteric small molecule inhibitors targeting this integrin's αI domain. The newly discovered chemical scaffold was derivatized, yielding potent bis-and tris-aryl-bicyclic-succinimides which inhibit LFA-1 in vitro at low nanomolar concentrations. The characterisation of these compounds in comparison to earlier LFA-1 targeting modalities established that the allosteric LFA-1 inhibitors (i) are devoid of partial agonism, (ii) selectively bind LFA-1 versus other integrins, (iii) do not trigger internalization of LFA-1 itself or other integrins and (iv) display oral availability. This profile differentiates the new generation of allosteric LFA-1 inhibitors from previous ligand mimetic-based LFA-1 inhibitors and anti-LFA-1 antibodies, and is projected to support novel immune regulatory regimens selectively targeting the integrin LFA-1. The rigorous computational and experimental assessment schedule described here is designed to be adaptable to the preclinical discovery and development of novel allosterically acting compounds targeting integrins other than LFA-1, providing an exemplary approach for the early characterisation of next generation integrin inhibitors.


Subject(s)
Lymphocyte Function-Associated Antigen-1 , Signal Transduction , Lymphocyte Function-Associated Antigen-1/chemistry , Lymphocyte Function-Associated Antigen-1/metabolism , Ligands , Intercellular Adhesion Molecule-1/metabolism
2.
ACS Med Chem Lett ; 6(7): 776-81, 2015 Jul 09.
Article in English | MEDLINE | ID: mdl-26191365

ABSTRACT

The discovery of inhibitors targeting novel allosteric kinase sites is very challenging. Such compounds, however, once identified could offer exquisite levels of selectivity across the kinome. Herein we report our structure-based optimization strategy of a dibenzodiazepine hit 1, discovered in a fragment-based screen, yielding highly potent and selective inhibitors of PAK1 such as 2 and 3. Compound 2 was cocrystallized with PAK1 to confirm binding to an allosteric site and to reveal novel key interactions. Compound 3 modulated PAK1 at the cellular level and due to its selectivity enabled valuable research to interrogate biological functions of the PAK1 kinase.

3.
ACS Med Chem Lett ; 5(7): 787-92, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-25050166

ABSTRACT

A cis-configured 3,5-disubstituted piperidine direct renin inhibitor, (syn,rac)-1, was discovered as a high-throughput screening hit from a target-family tailored library. Optimization of both the prime and the nonprime site residues flanking the central piperidine transition-state surrogate resulted in analogues with improved potency and pharmacokinetic (PK) properties, culminating in the identification of the 4-hydroxy-3,5-substituted piperidine 31. This compound showed high in vitro potency toward human renin with excellent off-target selectivity, 60% oral bioavailability in rat, and dose-dependent blood pressure lowering effects in the double-transgenic rat model.

4.
J Med Chem ; 56(6): 2207-17, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-23425156

ABSTRACT

The small-molecule trans-3,4-disubstituted pyrrolidine 6 was identified from in silico three-dimensional (3D) pharmacophore searches based on known X-ray structures of renin-inhibitor complexes and demonstrated to be a weakly active inhibitor of the human enzyme. The unexpected binding mode of the more potent enantiomer (3S,4S)-6a in an extended conformation spanning the nonprime and S1' pockets of the recombinant human (rh)-renin active site was elucidated by X-ray crystallography. Initial structure-activity relationship work focused on modifications of the hydrophobic diphenylamine portion positioned in S1 and extending toward the S2 pocket. Replacement with an optimized P3-P1 pharmacophore interacting to the nonsubstrate S3(sp) cavity eventually resulted in significantly improved in vitro potency and selectivity. The prototype analogue (3S,4S)-12a of this new class of direct renin inhibitors exerted blood pressure lowering effects in a hypertensive double-transgenic rat model after oral administration.


Subject(s)
Drug Discovery , Models, Molecular , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Renin/antagonists & inhibitors , Administration, Oral , Animals , Biological Availability , Computational Biology , Humans , Protease Inhibitors/administration & dosage , Protease Inhibitors/pharmacokinetics , Protein Conformation , Pyrrolidines/administration & dosage , Pyrrolidines/pharmacokinetics , Rats , Renin/chemistry , Structure-Activity Relationship
5.
J Med Chem ; 56(6): 2196-206, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-23360239

ABSTRACT

A small library of fragments comprising putative recognition motifs for the catalytic dyad of aspartic proteases was generated by in silico similarity searches within the corporate compound deck based on rh-renin active site docking and scoring filters. Subsequent screening by NMR identified the low-affinity hits 3 and 4 as competitive active site binders, which could be shown by X-ray crystallography to bind to the hydrophobic S3-S1 pocket of rh-renin. As part of a parallel multiple hit-finding approach, the 3,5-disubstituted piperidine (rac)-5 was discovered by HTS using a enzymatic assay. X-ray crystallography demonstrated the eutomer (3S,5R)-5 to be a peptidomimetic inhibitor binding to a nonsubstrate topography of the rh-renin prime site. The design of the potent and selective (3S,5R)-12 bearing a P3(sp)-tethered tricyclic P3-P1 pharmacophore derived from 3 is described. (3S,5R)-12 showed oral bioavailability in rats and demonstrated blood pressure lowering activity in the double-transgenic rat model.


Subject(s)
Drug Design , Piperidines/chemistry , Piperidines/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Renin/antagonists & inhibitors , Administration, Oral , Animals , Biological Availability , Inhibitory Concentration 50 , Models, Molecular , Piperidines/administration & dosage , Piperidines/pharmacokinetics , Protease Inhibitors/administration & dosage , Protease Inhibitors/pharmacokinetics , Protein Conformation , Rats , Renin/chemistry
6.
Future Med Chem ; 3(6): 751-66, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21554080

ABSTRACT

The design of a high-quality screening collection is of utmost importance for the early drug-discovery process and provides, in combination with high-quality assay systems, the foundation of future discoveries. Herein, we review recent trends and observations to successfully expand the access to bioactive chemical space, including the feedback from hit assessment interviews of high-throughput screening campaigns; recent successes with chemogenomics target family approaches, the identification of new relevant target/domain families, diversity-oriented synthesis and new emerging compound classes, and non-classical approaches, such as fragment-based screening and DNA-encoded chemical libraries. The role of in silico library design approaches are emphasized.


Subject(s)
Drug Design , High-Throughput Screening Assays/trends , Small Molecule Libraries/chemistry , Combinatorial Chemistry Techniques , Computer Simulation , DNA/chemistry , Drug Discovery/trends , Proteins/chemistry
7.
Bone ; 49(2): 233-41, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21514409

ABSTRACT

Parathyroid hormone (PTH), when injected daily as either the intact hormone PTH(1-84) or the active fragment PTH(1-34) (teriparatide), is an efficacious bone anabolic treatment option for osteoporosis patients. Injections lead to rapid and transient spikes in hormone exposure levels, a profile which is a prerequisite to effectively form bone. Oral antagonists of the calcium-sensing receptor (calcilytics) stimulate PTH secretion and represent thus an alternative approach to elevate hormone levels transiently. We report here on ATF936, a novel calcilytic, which triggered rapid, transient spikes in endogenous PTH levels when given orally in single doses of 10 and 30mg/kg to growing rats, and of 1mg/kg to dogs. Eight weeks daily oral application of 30mg/kg of ATF936 to aged female rats induced in the proximal tibia metaphysis increases in bone mineral density, cancellous bone volume and cortical and trabecular thickness as evaluated by computed tomography. In healthy humans, single oral doses of ATF936 produced peak PTH levels in plasma after a median time of 1h and levels returned to normal at 24-h post-dose. The average maximum PTH concentration increase from baseline was 1.9, 3.6, and 6.0-fold at doses of 40, 70, and 140mg. ATF936 was well tolerated. The sharp, transient increase in PTH levels produced by the oral calcilytic ATF936 was comparable to the PTH profile observed after subcutaneous administration of teriparatide. In conclusion, ATF936 might hold potential as an oral bone-forming osteoporosis therapy.


Subject(s)
Anabolic Agents/pharmacology , Bone Density/drug effects , Parathyroid Hormone/metabolism , Parathyroid Hormone/pharmacology , Quinazolinones/pharmacology , Receptors, Calcium-Sensing/antagonists & inhibitors , Adult , Anabolic Agents/pharmacokinetics , Animals , Bone and Bones/drug effects , Bone and Bones/metabolism , Calcium/metabolism , Dogs , Female , Humans , Male , Molecular Structure , Quinazolinones/pharmacokinetics , Rats , Rats, Wistar
8.
Bioorg Med Chem Lett ; 20(12): 3628-31, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20483608

ABSTRACT

A novel series of pyrazolo[1,5a]pyrimidines was optimized to target lymphocyte-specific kinase (Lck). An efficient synthetic route was developed and SAR studies toward activity and selectivity are described, leading to Lck inhibitors with enzymatic, cellular and in vivo potency.


Subject(s)
Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/antagonists & inhibitors , Administration, Oral , Animals , Humans , Interleukin-2/metabolism , Lymphocyte Activation/drug effects , Mice , Microsomes, Liver/metabolism , Pyrimidines/pharmacology , Rats , Structure-Activity Relationship
9.
J Med Chem ; 53(5): 2250-63, 2010 Mar 11.
Article in English | MEDLINE | ID: mdl-20158186

ABSTRACT

Parathyroid hormone (PTH) is an effective bone anabolic agent. However, only when administered by daily sc injections exposure of short duration is achieved, a prerequisite for an anabolic response. Instead of applying exogenous PTH, mobilization of endogenous stores of the hormone can be envisaged. The secretion of PTH stored in the parathyroid glands is mediated by a calcium sensing receptor (CaSR) a GPCR localized at the cell surface. Antagonists of CaSR (calcilytics) mimic a state of hypocalcaemia and stimulate PTH release to the bloodstream. Screening of the internal compound collection for inhibition of CaSR signaling function afforded 2a. In vitro potency could be improved >1000 fold by optimization of its chemical structure. The binding mode of our compounds was predicted based on molecular modeling and confirmed by testing with mutated receptors. While the compounds readily induced PTH release after iv application a special formulation was needed for oral activity. The required profile was achieved by using microemulsions. Excellent PK/PD correlation was found in rats and dogs. High levels of PTH were reached in plasma within minutes which reverted to baseline in about 1-2 h in both species.


Subject(s)
Bone Density Conservation Agents/chemical synthesis , Parathyroid Hormone/metabolism , Quinazolinones/chemical synthesis , Receptors, Calcium-Sensing/metabolism , Administration, Oral , Animals , Bone Density Conservation Agents/administration & dosage , Bone Density Conservation Agents/chemistry , Bone Density Conservation Agents/pharmacokinetics , Dogs , Inhibitory Concentration 50 , Male , Quinazolinones/administration & dosage , Quinazolinones/chemistry , Quinazolinones/pharmacokinetics , Rats , Rats, Wistar , Receptors, Calcium-Sensing/antagonists & inhibitors , Receptors, Calcium-Sensing/genetics , Structure-Activity Relationship
10.
Magn Reson Chem ; 46(1): 17-22, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18098224

ABSTRACT

We present here a new method using methoxyphenylacetic acid (MPA) as the chiral derivatizing agent (CDA) for the assignment of absolute configuration of cyclic secondary amines. The MPA amides were prepared using the purification-free 'mix and shake' method. A detailed conformational analysis for the two diastereomeric amides was conducted by 2D NMR experiments and molecular mechanics calculations. We have established that, in the most stable conformation of each syn rotamer of MPA amides, the H-alpha in the MPA moiety is oriented toward the bulky substituent group at the asymmetric carbon in the chiral amine, presumably to avoid steric and/or electrostatic interactions. The observed NMR data were correlated with the conformational model to allow unambiguous assignment of absolute configuration of secondary amines. The results demonstrate that the MPA can be used as a useful CDA in the case of sterically crowded cyclic secondary amines from which the MTPA amides are usually difficult to make.


Subject(s)
Amides/chemistry , Amines/chemistry , Heterocyclic Compounds/chemistry , Magnetic Resonance Spectroscopy , Phenylacetates/chemistry , Models, Molecular , Molecular Conformation , Stereoisomerism
11.
Cancer Cell ; 7(2): 129-41, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15710326

ABSTRACT

The Bcr-Abl tyrosine kinase oncogene causes chronic myelogenous leukemia (CML) and Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL). We describe a novel selective inhibitor of Bcr-Abl, AMN107 (IC50 <30 nM), which is significantly more potent than imatinib, and active against a number of imatinib-resistant Bcr-Abl mutants. Crystallographic analysis of Abl-AMN107 complexes provides a structural explanation for the differential activity of AMN107 and imatinib against imatinib-resistant Bcr-Abl. Consistent with its in vitro and pharmacokinetic profile, AMN107 prolonged survival of mice injected with Bcr-Abl-transformed hematopoietic cell lines or primary marrow cells, and prolonged survival in imatinib-resistant CML mouse models. AMN107 is a promising new inhibitor for the therapy of CML and Ph+ ALL.


Subject(s)
Antineoplastic Agents/pharmacology , Fusion Proteins, bcr-abl/antagonists & inhibitors , Fusion Proteins, bcr-abl/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Pyrimidines/chemistry , Pyrimidines/pharmacology , Animals , Benzamides , Bone Marrow Cells/cytology , Cell Line , Cell Line, Tumor , Cell Survival , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm , Hematopoietic Stem Cells/cytology , Imatinib Mesylate , Inhibitory Concentration 50 , Mice , Models, Biological , Models, Chemical , Mutation , Mycoplasma/metabolism , Phosphorylation , Piperazines/pharmacology , Retroviridae/genetics , Time Factors
12.
Bioorg Med Chem Lett ; 14(23): 5793-7, 2004 Dec 06.
Article in English | MEDLINE | ID: mdl-15501042

ABSTRACT

The constitutively active Abl kinase activity of the Bcr-Abl oncoprotein is causative for chronic myelogenous leukemia. Urea derivatives, structurally related to the therapeutic agent STI571, have been identified, which potently inhibit the tyrosine kinase activity of recombinant Abl. In particular a dimethylamino-aniline derivative (18) inhibited c-Abl transphosphorylation with an IC(50) value of 56 nM. Although this activity was not translated into cellular activity against the constitutively activated oncogenic Bcr-Abl, a number of compounds from this series potently inhibited cellular PDGFR autophosphorylation. It was also possible to differentiate between c-Abl and PDGFR kinase inhibition, with compound 22 being selective towards Abl and 23 selective for PDGFR.


Subject(s)
Genes, abl/drug effects , Piperazines/chemistry , Protein Kinase Inhibitors/analogs & derivatives , Pyrimidines/chemistry , Receptors, Platelet-Derived Growth Factor/antagonists & inhibitors , Urea/analogs & derivatives , Animals , Benzamides , Cell Line, Tumor , Genes, abl/physiology , Humans , Imatinib Mesylate , Mice , Piperazines/pharmacology , Protein Binding/drug effects , Protein Binding/physiology , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Receptors, Platelet-Derived Growth Factor/metabolism , Urea/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...