Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Syst Biol (Stevenage) ; 153(6): 433-47, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17186705

ABSTRACT

Complex cellular networks regulate regeneration, detoxification and differentiation of hepatocytes. By combining experimental data with mathematical modelling, systems biology holds great promises to elucidate the key regulatory mechanisms involved and predict targets for efficient intervention. For the generation of high-quality quantitative data suitable for mathematical modelling a standardised in vitro system is essential. Therefore the authors developed standard operating procedures for the preparation and cultivation of primary mouse hepatocytes. To reliably monitor the dynamic induction of signalling pathways, the authors established starvation conditions and evaluated the extent of starvation-associated stress by quantifying several metabolic functions of cultured primary hepatocytes, namely activities of glutathione-S-transferase, glutamine synthetase, CYP3A as well as secretion of lactate and urea into the culture medium. Establishment of constant metabolic activities after an initial decrease compared with freshly isolated hepatocytes showed that the cultured hepatocytes achieve a new equilibrium state that was not affected by our starving conditions. To verify the highly reproducible dynamic activation of signalling pathways in the in vitro system, the authors examined the JAK-STAT, SMAD, PI3 kinase, MAP kinase, NF-kappaB and Wnt/beta-catenin signalling pathways. For the induction of gp130, JAK1 and STAT3 phosphorylation IL6 was used, whereas TGFbeta was applied to activate the phosphorylation of SMAD1, SMAD2 and SMAD3. Both Akt/PKB and ERK1/2 phosphorylation were stimulated by the addition of hepatocyte growth factor. The time-dependent induction of a pool of signalling competent beta-catenin was monitored in response to the inhibition of GSK3beta. To analyse whether phosphorylation is actually leading to transcriptional responses, luciferase reporter gene constructs driven by multiple copies of TGFbeta-responsive motives were applied, demonstrating a dose-dependent increase in luciferase activity. Moreover, the induction of apoptosis by the TNF-like cytokine Fas ligand was studied in the in vitro system. Thus, the mouse hepatocyte in vitro system provides an important basis for the generation of high-quality quantitative data under standardised cell culture conditions that is essential to elucidate critical hepatocellular functions by the systems biology approach.


Subject(s)
Cytokines/metabolism , Hepatocytes/metabolism , Models, Animal , Models, Biological , Multienzyme Complexes/metabolism , Signal Transduction/physiology , Systems Biology/standards , Animals , Computer Simulation , Mice
2.
Z Gastroenterol ; 44(1): 57-66, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16397841

ABSTRACT

TGF-beta, acting both directly and indirectly, represents a central mediator of fibrogenic remodeling processes in the liver. Besides hepatic stellate cells (HSCs), which are induced by TGF-beta to transdifferentiate to myofibroblasts and to produce extracellular matrix, hepatocytes are also strongly responsive for this cytokine, which induces apoptosis during fibrogenesis and provides growth control in regeneration processes. Based on this, TGF-beta-mediated hepatic responses to injury are the result of a complex interplay between the different liver cell types. In this review we summarize the knowledge about TGF-beta signal transduction in HSCs with special impact on Smad pathways. We further describe a molecular cross-talk between profibrogenic TGF-beta and antifibrogenic IFN-gamma signaling in liver cells. Finally, we introduce hepatocyte plasticity and epithelial-to-mesenchymal transition in the liver, which is well established in tumorigenesis, as a potential feature of fibrogenesis and highlight possible action points of TGF-beta in these contexts.


Subject(s)
Hepatocytes/metabolism , Liver Cirrhosis/metabolism , Liver Neoplasms/metabolism , Signal Transduction , Smad Proteins/metabolism , Transforming Growth Factor beta/metabolism , Animals , Humans
3.
Gut ; 54(5): 673-81, 2005 May.
Article in English | MEDLINE | ID: mdl-15831915

ABSTRACT

BACKGROUND AND AIMS: Thrombospondin 1 (TSP-1) is an important activator of latent transforming growth factor beta (TGF-beta) but little is known of the expression patterns and functions of TSP-1 in liver cells. We therefore analysed if and how TSP-1 acts on TGF-beta during fibrogenesis. METHODS AND RESULTS: Using reverse transcription-polymerase chain reaction, we demonstrated that hepatocytes from normal liver expressed no TSP-1 mRNA whereas Kupffer cells and sinusoidal endothelial cells did. TSP-1 mRNA and protein were detected in quiescent and activated cultured hepatic stellate cells (HSC) and TSP-1 expression was highly inducible by platelet derived growth factor BB (PDGF-BB) and, to a lesser extent, by tumour necrosis factor alpha in activated HSC. Furthermore, addition of PDGF-BB directly led to enhanced TGF-beta mRNA expression and a TSP-1 dependent increase in TGF-beta/Smad signalling. Using either a peptide specifically blocking the interaction of TSP-1 with latent TGF-beta or antibodies against TSP-1 not only abrogated activation of latent TGF-beta but also reduced the effects of the active dimer itself. CONCLUSIONS: Our data suggest that TSP-1 expression is important for TGF-beta effects and that it is regulated by the profibrogenic mediator PDGF-BB in HSC. Furthermore, the presence of TSP-1 seems to be a prerequisite for effective signal transduction by active TGF-beta not only in rat HSC but also in other cell types such as human dermal fibroblasts.


Subject(s)
Liver/metabolism , Thrombospondin 1/metabolism , Transforming Growth Factor beta/metabolism , Animals , Base Sequence , Becaplermin , Cells, Cultured , Endothelial Cells/metabolism , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Hepatocytes/metabolism , Humans , Kupffer Cells/metabolism , Liver/cytology , Male , Molecular Sequence Data , Platelet-Derived Growth Factor/pharmacology , Proto-Oncogene Proteins c-sis , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction/methods , Sequence Alignment , Signal Transduction/physiology , Thrombospondin 1/genetics , Transforming Growth Factor beta/genetics , Tumor Necrosis Factor-alpha/pharmacology
4.
Hepatology ; 33(2): 387-96, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11172340

ABSTRACT

Latent transforming growth factor beta binding protein (LTBP), a high-molecular-weight glycoprotein of the large latent TGF-beta complex is suggested to serve as an anchor for latent TGF-beta in the extracellular matrix and as a component of microfibrillar structures. Proteolytic cleavage of LTBP is supposed to be a prerequisite for the release and generation of bioactive (mature) TGF-beta. We investigated the expression of LTBP isoforms in normal and fibrotic rat liver and in cultured rat hepatic stellate cells (HSC) transdifferentiating to myofibroblasts (MFB). We further determined their interaction with the matrix and some of their basic functions. Immunostainings of normal and fibrotic livers demonstrate intense signals for LTBP-1 and -2, preferably in parenchymal, but also nonparenchymal, cells and in fibrotic extracellular matrix. However, in situ hybridization points to a restriction of transcripts to nonparenchymal cells from fibrotic livers, whereas hepatocytes were always devoid of LTBP transcripts. The findings were confirmed by real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR), which showed isoform-specific increases of LTBP transcripts in cultured stellate cells transdifferentiating to MFB and by Northern blot analyses showing the absence of LTBP-1 mRNA in freshly isolated hepatocytes. Using a cell enzyme-linked immunosorbent assay (ELISA), a differential increase of partly deoxycholate (DOC)-resistant, matrix-bound LTBP-1 and -2 was measured in cultured stellate cells. Treatment with plasmin generated soluble LTBP-1 and bioactive TGF-beta, which was able to induce Smad7 expression in an autocrine fashion. Our data propose (transdifferentiating) stellate cells, respectively MFB, as the major source of LTBP in normal and fibrotic liver, which here probably fulfills structural and TGF-beta-regulating functions as suggested for nonhepatic tissues.


Subject(s)
Carrier Proteins/metabolism , Extracellular Matrix/metabolism , Intracellular Signaling Peptides and Proteins , Liver Cirrhosis/metabolism , Liver/cytology , Liver/metabolism , Animals , Bile Ducts , Carrier Proteins/genetics , Carrier Proteins/physiology , Cell Differentiation/physiology , Cells, Cultured , DNA-Binding Proteins/metabolism , Fibrinolysin/pharmacology , Latent TGF-beta Binding Proteins , Ligation , Male , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Reference Values , Smad7 Protein , Tissue Distribution , Trans-Activators/metabolism , Transforming Growth Factor beta/metabolism
5.
J Biol Chem ; 274(30): 21056-62, 1999 Jul 23.
Article in English | MEDLINE | ID: mdl-10409657

ABSTRACT

Activation of pro-matrix metalloproteinase (MMP)-2 on the surface of malignant cells by membrane-bound MT1-MMP is believed to play a critical role during tumor progression and metastasis. In this study we present evidence that MT1-MMP plays a key role for the in vitro invasiveness of malignant melanoma. Melanoma cell lines secreted latent MMP-2 when cultured on plastic. However, when cells were grown in floating type I collagen lattices, only high invasive melanoma cells activated proMMP-2. Activation could be inhibited by antibodies against MT1-MMP, by addition of recombinant tissue inhibitor of metalloproteinases (TIMP)-2 and by inhibition of MT1-MMP cleavage. MT1-MMP protein was detected as an inactive protein in all cell lines cultured as monolayers, whereas in collagen gels, active MT1-MMP protein was detected in the membranes of both high and low invasive melanoma cells. Production of TIMP-2 was about 10-fold higher in low invasive cells as compared with high invasive melanoma cells and was further increased in the low invasive cells upon contact to collagen. Thus, in melanoma cells TIMP-2 expression levels might regulate MT1-MMP-mediated activation of proMMP-2. High invasive melanoma cells displayed increased in vitro invasiveness, which was inhibited by TIMP-2. These data indicate the importance of these enzymes for the invasion processes and support a role for MT1-MMP as an activator of proMMP-2 in malignant melanoma.


Subject(s)
Gelatinases/metabolism , Melanoma/metabolism , Metalloendopeptidases/metabolism , Skin Neoplasms/metabolism , Tissue Inhibitor of Metalloproteinase-2/metabolism , Cell Movement , Collagen , Enzyme Activation , Humans , Matrix Metalloproteinase 2 , Matrix Metalloproteinases, Membrane-Associated , Melanoma/pathology , Neoplasm Invasiveness , Skin Neoplasms/pathology , Tumor Cells, Cultured
6.
Biochem J ; 339 ( Pt 1): 167-75, 1999 Apr 01.
Article in English | MEDLINE | ID: mdl-10085241

ABSTRACT

Many cell types, including fibroblasts and primary keratinocytes, increase matrix metalloproteinase 1 (MMP-1) production in response to agonists such as growth factors and phorbol esters. However, the spontaneously transformed human keratinocyte cell line HaCaT, although it increases MMP-1 production in response to epidermal growth factor (EGF), does not respond similarly to stimulation with PMA. This phenomenon occurs even though HaCaT cells remain proliferatively responsive to both agonists, suggesting a HaCaT-specific defect in a PMA-mediated signal transduction pathway. Using an inside-out approach to elucidate the source of this defect, we found that EGF, but not PMA, stimulated MMP-1 promoter activity in transiently transfected HaCaT keratinocytes. In addition, an assessment of fibroblast and HaCaT c-fos and c-jun gene expression after exposure to EGF and PMA showed that although both agonists increased the expression of c-fos and c-jun mRNA in fibroblasts, only EGF did so in HaCaT keratinocytes. Finally, we looked at the activation of mitogen-activated protein (MAP) family kinases after stimulation with EGF or PMA and found that both agonists increased the phosphorylation and activation of fibroblast extracellular signal-regulated protein kinase and c-Jun N-terminal kinase, but only EGF activated the same kinase activities in HaCaT cells. Further, the EGF-mediated increase in MMP-1 gene expression was inhibited by the MAP kinase/ERK kinase (MEK)-specific inhibitor PD98059 and the p38 kinase-specific inhibitor SB203580. Our evidence indicates that although HaCaT MAP kinases are functional, they are not properly regulated in response to the activation of protein kinase C, and that the defect that bars HaCaT MMP-1 expression in response to stimulation with PMA lies before MAP kinase activation.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinases/biosynthesis , Collagenases/genetics , Gene Expression Regulation, Enzymologic/drug effects , Keratinocytes/drug effects , Tetradecanoylphorbol Acetate/pharmacology , Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Cell Line , Enzyme Activation , Enzyme Induction , Enzyme Inhibitors/pharmacology , Epidermal Growth Factor/pharmacology , Genes, fos , Genes, jun , Humans , Keratinocytes/enzymology , Matrix Metalloproteinase 1 , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism
7.
Br J Pharmacol ; 118(8): 1899-904, 1996 Aug.
Article in English | MEDLINE | ID: mdl-8864521

ABSTRACT

1. Nitrendipine induces NO-release from coronary vascular endothelium presumably by activating endothelial NO-synthase. We have investigated whether this effect may be mediated by an influence on the intracellular calcium in endothelial cells. 2. Bovine aortic endothelial cells (BAEC) were incubated with Fura-2/AM (1 microM) for 30 min and Fura-2 fluorescence was measured at 510 nm in response to chopped excitation with both 340 and 380 nm. The ratio 340/380 nm (known to reflect changes in intracellular calcium) was calculated from these data. 3. Nitrendipine (0.1 to 100 microM) led to a significant, concentration-dependent, monophasic increase in [Ca2+]i in suspended BAEC by 11 +/- 2 nM (0.1 microM), 23 +/- 3 nM (1 microM), 34 +/- 4 nM (10 microM) and by 47 +/- 5 nM (100 microM) from a control levels of 118 +/- 10 nM. 4. This elevation of intracellular calcium was prevented by pretreatment of BAECs with gadolinium (100 microM) or by incubation with calcium free saline solution. In contrast, the application of 0.3 microM thapsigargin did not abolish the nitrendipine-induced calcium signal. In additional experiments it was shown that the nitrendipine-induced NO-release (as measured with the oxy-haemoglobin-method could also be inhibited by gadolinium and was absent in calcium-free solution. 5. Thus, nitrendipine elevates intracellular calcium in suspended BAECs in a concentration-dependent manner. This elevation is mainly due to a gadolinium-sensitive calcium influx from the extracellular space rather than a calcium release from intracellular stores.


Subject(s)
Aorta/drug effects , Calcium/metabolism , Nitrendipine/pharmacology , Animals , Cattle , Cells, Cultured/drug effects , Dose-Response Relationship, Drug , Endothelium/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...