Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 13(11)2021 10 27.
Article in English | MEDLINE | ID: mdl-34834970

ABSTRACT

Tick-borne flaviviruses (TBFV) can cause severe neurological complications in humans, but differences in tissue tropism and pathogenicity have been described for individual virus strains. Viral protein synthesis leads to the induction of the unfolded protein response (UPR) within infected cells. The IRE1 pathway has been hypothesized to support flavivirus replication by increasing protein and lipid biogenesis. Here, we investigated the role of the UPR in TBFV infection in human astrocytes, neuronal and intestinal cell lines that had been infected with tick-borne encephalitis virus (TBEV) strains Neudoerfl and MucAr-HB-171/11 as well as Langat virus (LGTV). Both TBEV strains replicated better than LGTV in central nervous system (CNS) cells. TBEV strain MucAr-HB-171/11, which is associated with gastrointestinal symptoms, replicated best in intestinal cells. All three viruses activated the inositol-requiring enzyme 1 (IRE1) pathway via the X-box binding protein 1 (XBP1). Interestingly, the neurotropic TBEV strain Neudoerfl induced a strong upregulation of XBP1 in all cell types, but with faster kinetics in CNS cells. In contrast, TBEV strain MucAr-HB-171/11 failed to activate the IRE1 pathway in astrocytes. The low pathogenic LGTV led to a mild induction of IRE1 signaling in astrocytes and intestinal cells. When cells were treated with IRE1 inhibitors prior to infection, TBFV replication in astrocytes was significantly reduced. This confirms a supporting role of the IRE1 pathway for TBFV infection in relevant viral target cells and suggests a correlation between viral tissue tropism and the cell-type dependent induction of the unfolded protein response.


Subject(s)
Endoribonucleases/metabolism , Flavivirus , Protein Serine-Threonine Kinases/metabolism , Tick-Borne Diseases/virology , Unfolded Protein Response , Animals , Astrocytes/virology , Cell Line , Encephalitis Viruses, Tick-Borne/physiology , Encephalitis, Tick-Borne/virology , Endoribonucleases/genetics , Humans , Neurons/virology , Protein Serine-Threonine Kinases/genetics , Signal Transduction , Ticks , Viral Tropism , Virus Replication
2.
J Neurosci Res ; 99(10): 2478-2492, 2021 10.
Article in English | MEDLINE | ID: mdl-34296786

ABSTRACT

Tick-borne encephalitis virus (TBEV), a member of the Flaviviridae family, is typically transmitted upon tick bite and can cause meningitis and encephalitis in humans. In TBEV-infected mice, mitochondrial antiviral-signaling protein (MAVS), the downstream adaptor of retinoic acid-inducible gene-I (RIG-I)-like receptor (RLR) signaling, is needed to induce early type I interferon (IFN) responses and to confer protection. To characterize the brain-resident cell subset that produces protective IFN-ß in TBEV-infected mice, we isolated neurons, astrocytes, and microglia from mice and exposed these cell types to TBEV in vitro. Under such conditions, neurons showed the highest percentage of infected cells, whereas astrocytes and microglia were infected to a lesser extent. In the supernatant (SN) of infected neurons, IFN-ß was not detectable, while infected astrocytes showed high and microglia low IFN-ß expression. Transcriptome analyses of astrocytes implied that MAVS signaling was needed early after TBEV infection. Accordingly, MAVS-deficient astrocytes showed enhanced TBEV infection and significantly reduced early IFN-ß responses. Nevertheless, at later time points, moderate amounts of IFN-ß were detected in the SN of infected MAVS-deficient astrocytes. Transcriptome analyses indicated that MAVS deficiency negatively affected the induction of early anti-viral responses, which resulted in significantly increased TBEV replication. Treatment with MyD88 and TRIF inhibiting peptides reduced only late IFN-ß responses of TBEV-infected WT astrocytes and blocked entirely IFN-ß responses of infected MAVS-deficient astrocytes. Thus, upon TBEV exposure of brain-resident cells, astrocytes are important IFN-ß producers showing biphasic IFN-ß induction that initially depends on MAVS and later on MyD88/TRIF signaling.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Astrocytes/metabolism , Encephalitis Viruses, Tick-Borne/metabolism , Encephalitis, Tick-Borne/metabolism , Myeloid Differentiation Factor 88/metabolism , Animals , Astrocytes/virology , Encephalitis, Tick-Borne/prevention & control , Mice , Mice, Inbred C57BL , Mice, Transgenic , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...