Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 295(21): 7391-7403, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32303638

ABSTRACT

The intracellular bacterial pathogen Coxiella burnetii is the etiological agent of the emerging zoonosis Q fever. Crucial to its pathogenesis is type 4b secretion system-mediated secretion of bacterial effectors into host cells that subvert host cell membrane trafficking, leading to the biogenesis of a parasitophorous vacuole for intracellular replication. The characterization of prokaryotic serine/threonine protein kinases in bacterial pathogens is emerging as an important strategy to better understand host-pathogen interactions. In this study, we investigated CstK (for Coxiella Ser/Thr kinase), a protein kinase identified in C. burnetii by in silico analysis. We demonstrate that this putative protein kinase undergoes autophosphorylation on Thr and Tyr residues and phosphorylates a classical eukaryotic protein kinase substrate in vitro This dual Thr-Tyr kinase activity is also observed for a eukaryotic dual-specificity Tyr phosphorylation-regulated kinase class. We found that CstK is translocated during infections and localizes to Coxiella-containing vacuoles (CCVs). Moreover, a CstK-overexpressing C. burnetii strain displayed a severe CCV development phenotype, suggesting that CstK fine-tunes CCV biogenesis during the infection. Protein-protein interaction experiments identified the Rab7 GTPase-activating protein TBC1D5 as a candidate CstK-specific target, suggesting a role for this host GTPase-activating protein in Coxiella infections. Indeed, CstK co-localized with TBC1D5 in noninfected cells, and TBC1D5 was recruited to CCVs in infected cells. Accordingly, TBC1D5 depletion from infected cells significantly affected CCV development. Our results indicate that CstK functions as a bacterial effector protein that interacts with the host protein TBC1D5 during vacuole biogenesis and intracellular replication.


Subject(s)
Bacterial Proteins/metabolism , Coxiella burnetii/enzymology , GTPase-Activating Proteins/metabolism , Protein Kinases/metabolism , Q Fever/metabolism , Vacuoles/metabolism , Bacterial Proteins/genetics , Cell Line, Tumor , Coxiella burnetii/genetics , GTPase-Activating Proteins/genetics , Humans , Phosphorylation , Protein Kinases/genetics , Q Fever/genetics , Vacuoles/genetics , Vacuoles/microbiology
2.
Biochem Biophys Res Commun ; 473(4): 1223-1228, 2016 05 13.
Article in English | MEDLINE | ID: mdl-27091430

ABSTRACT

The stage V sporulation protein G (SpoVG) homolog of Staphylococcus aureus is a modulator of virulence factor synthesis and antibiotic resistance in this clinically important gram-positive pathogen. Here we demonstrate that SpoVG can be phosphorylated by the staphylococcal Ser/Thr protein kinase Stk1 and that phosphorylation positively affects its DNA-binding properties. Mass spectrometric analyses and site directed mutagenesis identified Thr4, Thr13, Thr24 and Ser41 as phospho-acceptors. Stk1-mediated phosphorylation markedly enhanced the DNA binding activity of SpoVG towards the promoter regions of target genes such as capA, lip, and nuc1. Similarly, trans-complementation of the S. aureus ΔyabJ-spoVG mutant SM148 with a SpoVG derivative that mimics constitutive phosphorylation, SpoVG_Asp, exhibited capA, lip, and nuc1 transcript levels that were comparable to the levels seen with the wild-type, whereas trans-complementation with a phosphoablative variant of SpoVG (SpoVG_Ala) produced transcript levels similar to the ones seen in SM148. Our data suggest that the expression/activity of this transcription factor is tightly controlled in S. aureus by transcriptional, post-transcriptional and post-translational mechanisms.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Protein Serine-Threonine Kinases/metabolism , Staphylococcus aureus/metabolism , Virulence Factors/metabolism , Bacterial Proteins/genetics , DNA-Binding Proteins , Phosphorylation , Protein Binding , Protein Serine-Threonine Kinases/genetics , Staphylococcus aureus/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation/physiology , Virulence Factors/genetics
3.
Biochem Biophys Res Commun ; 469(3): 619-25, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26679607

ABSTRACT

Due to the emergence of methicillin-resistant strains, Staphylococcus aureus has become as major public-health threat. Studies aimed at deciphering the molecular mechanism of virulence are thus required to identify new targets and develop efficient therapeutic agents. Protein phosphorylations are known to play key regulatory functions and their roles in pathogenesis are under intense scrutiny. Here we analyzed the protein tyrosine phosphatase PtpA of S. aureus, a member of the family of low molecular weight protein tyrosine phosphatases that are often secreted by pathogenic bacteria. We report for the first time that PtpA is phosphorylated in vitro by the S. aureus tyrosine kinase CapA1B2. A mass spectrometry approach allowed determining that Tyr122 and Tyr123 were the only two residues phosphorylated by this kinase. This result was confirmed by analysis of a double PtpA_Y122A/Y123A mutant that showed no phosphorylation by CapA1B2. Interestingly, PtpA phosphatase activity was abrogated in this mutant, suggesting a key regulatory function for these two tyrosine residues. This was further reinforced by the observation that CapA1B2-mediated phosphorylation significantly increased PtpA phosphatase activity. Moreover, we provide evidence that PtpA is secreted during growth of S. aureus. Together our results suggest that PtpA is an exported S. aureus signaling molecule controlled by tyrosine phosphorylation which may interfere with host cell signaling.


Subject(s)
Bacterial Proteins/metabolism , Protein Tyrosine Phosphatases/metabolism , Protein-Tyrosine Kinases/metabolism , Staphylococcus aureus/enzymology , Cell Proliferation/physiology , Phosphorylation/physiology
4.
Biochem Biophys Res Commun ; 447(1): 165-71, 2014 Apr 25.
Article in English | MEDLINE | ID: mdl-24704444

ABSTRACT

The Staphylococcus aureus Vancomycin-resistance-associated response regulator VraR is known as an important response regulator, member of the VraTSR three-component signal transduction system that modulates the expression of the cell wall stress stimulon in response to a number of different cell wall active antibiotics. Given its crucial role in regulating gene expression in response to antibiotic challenges, VraR must be tightly regulated. We report here for the first time in S. aureus convergence of two major signal transduction systems, serine/threonine protein kinase and two (three)-component systems. We demonstrate that VraR can be phosphorylated by the staphylococcal Ser/Thr protein kinase Stk1 and that phosphorylation negatively affects its DNA-binding properties. Mass spectrometric analyses and site-directed mutagenesis identified Thr106, Thr119, Thr175 and Thr178 as phosphoacceptors. A S. aureus ΔvraR mutant expressing a VraR derivative that mimics constitutive phosphorylation, VraR_Asp, still exhibited markedly decreased antibiotic resistance against different cell wall active antibiotics, when compared to the wild-type, suggesting that VraR phosphorylation may represent a novel and presumably more general mechanism of regulation of the two (three)-component systems in staphylococci.


Subject(s)
Bacterial Proteins/genetics , DNA-Binding Proteins/genetics , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Staphylococcus aureus/genetics , Virulence Factors/metabolism , Amino Acid Sequence , Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Drug Resistance, Bacterial/genetics , Gene Expression Regulation, Bacterial , Microbial Sensitivity Tests , Phosphorylation , Vancomycin/metabolism , Vancomycin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...