Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 6945, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37907528

ABSTRACT

Enveloped viruses assemble and bud from the host cell membranes. Any role of cortical actin in these processes have often been a source of debate. Here, we assessed if cortical actin was involved in HIV-1 assembly in infected CD4 T lymphocytes. Our results show that preventing actin branching not only increases HIV-1 particle release but also the number of individual HIV-1 Gag assembly clusters at the T cell plasma membrane. Indeed, in infected T lymphocytes and in in vitro quantitative model systems, we show that HIV-1 Gag protein prefers areas deficient in F-actin for assembling. Finally, we found that the host factor Arpin, an inhibitor of Arp2/3 branched actin, is recruited at the membrane of infected T cells and it can associate with the viral Gag protein. Altogether, our data show that, for virus assembly and particle release, HIV-1 prefers low density of cortical actin and may favor local actin debranching by subverting Arpin.


Subject(s)
Actins , HIV-1 , Actins/metabolism , HIV-1/metabolism , Virus Assembly , Gene Products, gag/metabolism , CD4-Positive T-Lymphocytes/metabolism , Cell Membrane/metabolism , Viral Proteins/metabolism , gag Gene Products, Human Immunodeficiency Virus/metabolism
2.
Biophys J ; 122(11): 2216-2229, 2023 06 06.
Article in English | MEDLINE | ID: mdl-36632034

ABSTRACT

Many transient processes in cells arise from the binding of cytosolic proteins to membranes. Quantifying this membrane binding and its associated diffusion in the living cell is therefore of primary importance. Dynamic photonic microscopies, e.g., single/multiple particle tracking, fluorescence recovery after photobleaching, and fluorescence correlation spectroscopy (FCS), enable non-invasive measurement of molecular mobility in living cells and their plasma membranes. However, FCS with a single beam waist is of limited applicability with complex, non-Brownian, motions. Recently, the development of FCS diffusion laws methods has given access to the characterization of these complex motions, although none of them is applicable to the membrane binding case at the moment. In this study, we combined computer simulations and FCS experiments to propose an FCS diffusion law for membrane binding. First, we generated computer simulations of spot-variation FCS (svFCS) measurements for a membrane binding process combined to 2D and 3D diffusion at the membrane and in the bulk/cytosol, respectively. Then, using these simulations as a learning set, we derived an empirical diffusion law with three free parameters: the apparent binding constant KD, the diffusion coefficient on the membrane D2D, and the diffusion coefficient in the cytosol, D3D. Finally, we monitored, using svFCS, the dynamics of retroviral Gag proteins and associated mutants during their binding to supported lipid bilayers of different lipid composition or at plasma membranes of living cells, and we quantified KD and D2D in these conditions using our empirical diffusion law. Based on these experiments and numerical simulations, we conclude that this new approach enables correct estimation of membrane partitioning and membrane diffusion properties (KD and D2D) for peripheral membrane molecules.


Subject(s)
Lipid Bilayers , Cell Membrane/metabolism , Lipid Bilayers/chemistry , Membranes , Spectrometry, Fluorescence/methods , Diffusion
3.
iScience ; 25(10): 105066, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36093378

ABSTRACT

Patients with severe COVID-19 show an altered immune response that fails to control the viral spread and suffer from exacerbated inflammatory response, which eventually can lead to death. A major challenge is to develop an effective treatment for COVID-19. NF-κB is a major player in innate immunity and inflammatory process. By a high-throughput screening approach, we identified FDA-approved compounds that inhibit the NF-κB pathway and thus dampen inflammation. Among these, we show that Auranofin prevents post-translational modifications of NF-κB effectors and their recruitment into activating complexes in response to SARS-CoV-2 infection or cytokine stimulation. In addition, we demonstrate that Auranofin counteracts several steps of SARS-CoV-2 infection. First, it inhibits a raft-dependent endocytic pathway involved in SARS-CoV-2 entry into host cells; Second, Auranofin alters the ACE2 mobility at the plasma membrane. Overall, Auranofin should prevent SARS-CoV-2 infection and inflammatory damages, offering new opportunities as a repurposable drug candidate to treat COVID-19.

4.
Membranes (Basel) ; 12(5)2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35629766

ABSTRACT

The cell plasma membrane is mainly composed of phospholipids, cholesterol and embedded proteins, presenting a complex interface with the environment. It maintains a barrier to control matter fluxes between the cell cytosol and its outer environment. Enveloped viruses are also surrounded by a lipidic membrane derived from the host-cell membrane and acquired while exiting the host cell during the assembly and budding steps of their viral cycle. Thus, model membranes composed of selected lipid mixtures mimicking plasma membrane properties are the tools of choice and were used to decipher the first step in the assembly of enveloped viruses. Amongst these viruses, we choose to report the three most frequently studied viruses responsible for lethal human diseases, i.e., Human Immunodeficiency Type 1 (HIV-1), Influenza A Virus (IAV) and Ebola Virus (EBOV), which assemble at the host-cell plasma membrane. Here, we review how model membranes such as Langmuir monolayers, bicelles, large and small unilamellar vesicles (LUVs and SUVs), supported lipid bilayers (SLBs), tethered-bilayer lipid membranes (tBLM) and giant unilamellar vesicles (GUVs) contribute to the understanding of viral assembly mechanisms and dynamics using biophysical approaches.

5.
Cell Rep ; 39(4): 110747, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35476975

ABSTRACT

Interferon gamma (IFNγ) is a proinflammatory cytokine implicated in autoimmune diseases. However, deficiency or neutralization of IFNγ is ineffective in reducing disease. We characterize islet antigen-specific T cells in non-obese diabetic (NOD) mice lacking all three IFN receptor genes. Diabetes is minimally affected, but at 125 days of age, antigen-specific CD8+ T cells, quantified using major histocompatibility complex class I tetramers, are present in 10-fold greater numbers in Ifngr-mutant NOD mice. T cells from Ifngr-mutant mice have increased proliferative responses to interleukin-2 (IL-2). They also have reduced phosphorylated STAT1 and its target gene, suppressor of cytokine signaling 1 (SOCS-1). IFNγ controls the expansion of antigen-specific CD8+ T cells by mechanisms which include increased SOCS-1 expression that regulates IL-2 signaling. The expanded CD8+ T cells are likely to contribute to normal diabetes progression despite reduced inflammation in Ifngr-mutant mice.


Subject(s)
Diabetes Mellitus , Interleukin-2 , Animals , Autoantigens , CD8-Positive T-Lymphocytes , Cytokines/metabolism , Interferon-gamma/metabolism , Interferons/metabolism , Interleukin-2/metabolism , Mice , Mice, Inbred NOD , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism , Suppressor of Cytokine Signaling Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...