Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 146(1): 89-97, 2005 Sep.
Article in English | MEDLINE | ID: mdl-15980875

ABSTRACT

The effects of the novel GABA analogue (2R)-(3-amino-2-fluoropropyl)sulphinic acid (AFPSiA) on transient lower oesophageal sphincter relaxations (TLOSRs) were studied in the dog. In addition, the GABA(A)/GABA(B) selectivity was determined in vitro and in vivo, and the pharmacokinetics and the metabolism of the compound were studied in the dog and rat. TLOSRs were reduced by 55 +/- 8% after intragastric administration of AFPSiA at 14 mumol kg(-1) and did not decrease further at higher doses. When evaluated 2 and 4 h after administration, the effect declined to 37 +/- 6 and 16 +/- 9%, respectively. Spontaneous swallowing was only significantly inhibited at 100 micromol kg(-1). The oral availability of AFPSiA was 52 +/- 17 and 71 +/- 4% in the dog and rat, respectively. A fraction of AFPSiA was oxidised to the corresponding sulphonate, (2R)-(3-amino-2-fluoropropyl)sulphonic acid (AFPSoA) after oral administration to the rat and dog. In rat brain membranes, AFPSiA was found to have ten times higher affinity for rat brain GABA(B) (K(i) =47 +/- 4.4 nM) compared to GABA(A) (K(i) = 430 +/- 46 nM) binding sites. The compound was a full agonist at human recombinant GABA(B(1a,2)) receptors (EC(50) = 130 +/- 10 nM). In contrast, the metabolite AFPSoA was considerably more selective for binding to rat brain GABA(A) (K(i) = 37 +/- 3.1 nM) vs GABA(B) (K(i) = 6800 +/- 280 nM) receptors. In the mouse, high doses (1-8 mmol kg(-1)) of AFPSiA induced a rapid and mild hypothermia followed by a profound and sustained hypothermia at the higher doses tested (6 and 8 mmol kg(-1)). This effect was unaffected by the selective GABA(B) receptor antagonist CGP62349. AFPSoA (1 and 2 mmol kg(-1)) produced transient and moderate hypothermia while the hypothermic response was considerably larger at 4 mmol kg(-1).It is concluded that AFPSiA inhibits but does not abolish TLOSRs in the dog. High doses of the compound induce hypothermia in the mouse, which probably is attributable to activation of the GABA(A) receptor. The latter effect may be caused both by AFPSiA and its oxidised sulphonic acid metabolite AFPSoA.


Subject(s)
Esophageal Sphincter, Lower/drug effects , GABA Agonists/pharmacology , GABA-B Receptor Agonists , Muscle Relaxation/drug effects , Sulfinic Acids/pharmacology , Animals , Body Temperature/drug effects , Brain/drug effects , Brain/metabolism , CHO Cells , Calcium/metabolism , Cricetinae , Cricetulus , Deglutition/drug effects , Dogs , Esophageal Sphincter, Lower/physiology , Female , GABA-A Receptor Agonists , GABA-B Receptor Antagonists , Hypothermia/chemically induced , Mice , Rats , Rats, Sprague-Dawley , Rats, Wistar , Receptors, GABA-A/metabolism , Receptors, GABA-B/metabolism , Sulfinic Acids/adverse effects , Synaptic Vesicles/drug effects , Synaptic Vesicles/metabolism
2.
Br J Pharmacol ; 140(2): 315-22, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12970075

ABSTRACT

1. Activation of GABA(B) receptors evokes hypothermia in wildtype (GABA(B(1))+/+) but not in GABA(B) receptor knockout (GABA(B(1))-/-) mice. The aim of the present study was to determine the hypothermic and behavioural effects of the putative GABA(B) receptor agonist gamma-hydroxybutyrate (GHB), and of the GABA(A) receptor agonist muscimol. In addition, basal body temperature was determined in GABA(B(1))+/+, GABA(B(1))+/- and GABA(B(1))-/- mice. 2. GABA(B(1))-/- mice were generated by homologous recombination in embryonic stem cells. Correct gene targeting was assessed by Southern blotting, PCR and Western blotting. GABA(B) receptor-binding sites were quantified with radioligand binding. Measurement of body temperature was done using subcutaneous temperature-sensitive chips, and behavioural changes after drug administration were scored according to a semiquantitative scale. 3. GABA(B(1))-/- mice had a short lifespan, probably caused by generalised seizure activity. No histopathological or blood chemistry changes were seen, but the expression of GABA(B(2)) receptor protein was below the detection limit in brains from GABA(B(1))-/- mice, in the absence of changes in mRNA levels. 4. GABA(B) receptor-binding sites were absent in brain membranes from GABA(B(1))-/- mice. 5. GABA(B(1))-/- mice were hypothermic by approximately 1 degrees C compared to GABA(B(1))+/+ and GABA(B(1))+/- mice. 6. Injection of baclofen (9.6 mg kg-1) produced a large reduction in body temperature and behavioural effects in GABA(B(1))+/+ and in GABA(B(1))+/- mice, but GABA(B(1))-/- mice were unaffected. The same pattern was seen after administration of GHB (400 mg kg-1). The GABA(A) receptor agonist muscimol (2 mg kg-1), on the other hand, produced a more pronounced hypothermia in GABA(B(1))-/-mice. In GABA(B(1))+/+ and GABA(B(1))+/- mice, muscimol induced sedation and reduced locomotor activity. However, when given to GABA(B(1))-/- mice, muscimol triggered periods of intense jumping and wild running. 7. It is concluded that hypothermia should be added to the characteristics of the GABAB(1)-/-phenotype. Using this model, GHB was shown to be a selective GABAB receptor agonist. In addition, GABAB(1)-/- mice are hypersensitive to GABAA receptor stimulation, indicating that GABAB tone normally balances GABAA-mediated effects.


Subject(s)
Body Temperature Regulation/drug effects , GABA Agonists/pharmacology , GABA-B Receptor Agonists , Animals , Baclofen/pharmacology , Behavior, Animal/drug effects , Brain/drug effects , Brain/metabolism , Cloning, Molecular , GABA-A Receptor Agonists , Gene Expression Regulation/drug effects , Genotype , Hypothermia/chemically induced , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Mice, Knockout , Muscimol/pharmacology , Phenotype , Protein Subunits/genetics , RNA, Messenger/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, GABA-A/genetics , Receptors, GABA-A/physiology , Receptors, GABA-B/genetics , Receptors, GABA-B/physiology , Sodium Oxybate/pharmacology
3.
Eur J Pharmacol ; 448(1): 67-70, 2002 Jul 12.
Article in English | MEDLINE | ID: mdl-12126973

ABSTRACT

The effects of the GABA(B) receptor agonists baclofen (1.4 and 7 micromol/kg i.v.) and CGP 44532 ([(2S)-3-amino-2-hydroxypropyl]methyl phosphinic acid], 0.2 and 0.7 micromol/kg i.v.) on transient lower esophageal sphincter relaxations and spontaneous and pharyngeally stimulated swallowing were investigated in conscious dogs. Both compounds inhibited transient lower esophageal sphincter relaxations dose-dependently, CGP 44532 being approximately fivefold more potent. In experiments designed to measure transient lower esophageal sphincter relaxations, spontaneous swallowing was suppressed by both compounds. When swallowing was evoked by intrapharyngeal water injection, both baclofen and CGP 44532 reduced the occurrence of primary peristalsis. It is concluded that centrally acting GABA(B) receptor agonists inhibit spontaneous and stimulated swallowing probably through an action in the central pattern generator for swallowing.


Subject(s)
Baclofen/pharmacology , Deglutition/drug effects , Esophagogastric Junction/drug effects , Organophosphonates/pharmacology , Receptors, GABA-B , gamma-Aminobutyric Acid/analogs & derivatives , gamma-Aminobutyric Acid/pharmacology , Animals , Dogs , GABA-B Receptor Agonists , Muscle Relaxation/drug effects , Phosphinic Acids
SELECTION OF CITATIONS
SEARCH DETAIL
...