Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Trials ; 22(1): 84, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33482890

ABSTRACT

BACKGROUND: The lack of approved treatments for the majority of rare diseases is reflective of the unique challenges of orphan drug development. Novel methodologies, including new functionally relevant endpoints, are needed to render the development process more feasible and appropriate for these rare populations and thereby expedite the approval of promising treatments to address patients' high unmet medical need. Here, we describe the development of an innovative master protocol and primary outcome assessment to investigate the modified amino acid N-acetyl-L-leucine (Sponsor Code: IB1001) in three separate, multinational, phase II trials for three ultra-rare, autosomal-recessive, neurodegenerative disorders: Niemann-Pick disease type C (NPC), GM2 gangliosidoses (Tay-Sachs and Sandhoff disease; "GM2"), and ataxia telangiectasia (A-T). METHODS/DESIGN: The innovative IB1001 master protocol and novel CI-CS primary endpoints were developed through a close collaboration between the Industry Sponsor, Key Opinion Leaders, representatives of the Patient Communities, and National Regulatory Authorities. As a result, the open-label, rater-blinded study design is considerate of the practical limitations of recruitment and retention of subjects in these ultra-orphan populations. The novel primary endpoint, the Clinical Impression of Change in Severity© (CI-CS), accommodates the heterogenous clinical presentation of NPC, GM2, and A-T: at screening, the principal investigator appoints for each patient a primary anchor test (either the 8-m walk test (8MWT) or 9-hole peg test of the dominant hand (9HPT-D)) based on his/her unique clinical symptoms. The anchor tests are videoed in a standardized manner at each visit to capture all aspects related to the patient's functional performance. The CI-CS assessment is ultimately performed by independent, blinded raters who compare videos of the primary anchor test from three periods: baseline, the end of treatment, and the end of a post-treatment washout. Blinded to the time point of each video, the raters make an objective comparison scored on a 7-point Likert scale of the change in the severity of the patient's neurological signs and symptoms from video A to video B. To investigate both the symptomatic and disease-modifying effects of treatment, N-acetyl-L-leucine is assessed during two treatment sequences: a 6-week parent study and 1-year extension phase. DISCUSSION: The novel CI-CS assessment, developed through a collaboration of all stakeholders, is advantageous in that it better ensures the primary endpoint is functionally relevant for each patient, is able to capture small but meaningful clinical changes critical to the patients' quality of life (fine-motor skills; gait), and blinds the primary outcome assessment. The results of these three trials will inform whether N-acetyl-L-leucine is an effective treatment for NPC, GM2, and A-T and can also serve as a new therapeutic paradigm for the development of future treatments for other orphan diseases. TRIAL REGISTRATION: The three trials (IB1001-201 for Niemann-Pick disease type C (NPC), IB1001-202 for GM2 gangliosidoses (Tay-Sachs and Sandhoff), IB1001-203 for ataxia telangiectasia (A-T)) have been registered at www.clinicaltrials.gov (NCT03759639; NCT03759665; NCT03759678), www.clinicaltrialsregister.eu (EudraCT: 2018-004331-71; 2018-004406-25; 2018-004407-39), and https://www.germanctr.de (DR KS-ID: DRKS00016567; DRKS00017539; DRKS00020511).


Subject(s)
Ataxia Telangiectasia , Gangliosidoses, GM2 , Neurodegenerative Diseases , Female , Humans , Leucine , Male , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/drug therapy , Quality of Life
2.
J Neurol ; 267(4): 1211-1220, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32002650

ABSTRACT

Cerebellar ataxias (CAs) represent a heterogeneous group of sporadic or inherited disorders. The clinical spectrum of CAs is continuously expanding. Our understanding of the mechanisms leading to the clinical deficits has improved over these last decades, in particular thanks to progress in genetics, neuroimaging and the advent of relevant animal models allowing the identification of the pathophysiological pathways leading to CAs. The rationale behind treatments is now established for most of the CAs encountered during daily practice worldwide. In this update, we will discuss the symptomatic, physical and occupational therapies now being trialled along with individualized exercises, and present key emerging issues on immune-mediated cerebellar ataxias, hereditary cerebellar ataxias. Finally, we will discuss novel therapeutic approaches, including cerebellar non-invasive stimulation and treatments acting on RNA/proteins. So far, no state-of-the art randomized placebo-controlled clinical trial has shown a convincing clinically relevant efficacy of any drug, with the exception of 4-aminopyridine for the symptomatic treatment of episodic ataxia type 2 and downbeat nystagmus (placebo-controlled trials).


Subject(s)
Cerebellar Ataxia/therapy , Cerebellar Ataxia/genetics , Cerebellar Ataxia/immunology , Cerebellar Ataxia/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...