Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(4): 106302, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-36950112

ABSTRACT

Cardiac in vitro models have become increasingly obtainable and affordable with the optimization of human pluripotent stem cell-derived cardiomyocyte (hPSC-CM) differentiation. However, these CMs are immature compared to their in vivo counterparts. Here we study the cellular phenotype of hPSC-CMs by comparing their single-cell gene expression and functional profiles in three engineered cardiac tissue configurations: human ventricular (hv) cardiac anisotropic sheet, cardiac tissue strip, and cardiac organoid chamber (hvCOC), with spontaneously aggregated 3D cardiac spheroids (CS) as control. The CM maturity was found to increase with increasing levels of complexity of the engineered tissues from CS to hvCOC. The contractile components are the first function to mature, followed by electrophysiology and oxidative metabolism. Notably, the 2D tissue constructs show a higher cellular organization whereas metabolic maturity preferentially increases in the 3D constructs. We conclude that the tissue engineering models resembling configurations of native tissues may be reliable for drug screening or disease modeling.

2.
J Am Heart Assoc ; 9(20): e016528, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33059525

ABSTRACT

Background To understand the intrinsic cardiac developmental and functional abnormalities in pulmonary atresia with intact ventricular septum (PAIVS) free from effects secondary to anatomic defects, we performed and compared single-cell transcriptomic and phenotypic analyses of patient- and healthy subject-derived human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and engineered tissue models. Methods and Results We derived hiPSC lines from 3 patients with PAIVS and 3 healthy subjects and differentiated them into hiPSC-CMs, which were then bioengineered into the human cardiac anisotropic sheet and human cardiac tissue strip custom-designed for electrophysiological and contractile assessments, respectively. Single-cell RNA sequencing (scRNA-seq) of hiPSC-CMs, human cardiac anisotropic sheet, and human cardiac tissue strip was performed to examine the transcriptomic basis for any phenotypic abnormalities using pseudotime and differential expression analyses. Through pseudotime analysis, we demonstrated that bioengineered tissue constructs provide pro-maturational cues to hiPSC-CMs, although the maturation and development were attenuated in PAIVS hiPSC-CMs. Furthermore, reduced contractility and prolonged contractile kinetics were observed with PAIVS human cardiac tissue strips. Consistently, single-cell RNA sequencing of PAIVS human cardiac tissue strips and hiPSC-CMs exhibited diminished expression of cardiac contractile apparatus genes. By contrast, electrophysiological aberrancies were absent in PAIVS human cardiac anisotropic sheets. Conclusions Our findings were the first to reveal intrinsic abnormalities of cardiomyocyte development and function in PAIVS free from secondary effects. We conclude that hiPSC-derived engineered tissues offer a unique method for studying primary cardiac abnormalities and uncovering pathogenic mechanisms that underlie sporadic congenital heart diseases.


Subject(s)
Heart Defects, Congenital , Induced Pluripotent Stem Cells/physiology , Myocardial Contraction , Myocytes, Cardiac/physiology , Pulmonary Atresia , Tissue Engineering/methods , Bioengineering , Heart Defects, Congenital/genetics , Heart Defects, Congenital/pathology , Heart Defects, Congenital/physiopathology , Humans , Models, Cardiovascular , Models, Genetic , Organ Culture Techniques , Pulmonary Atresia/genetics , Pulmonary Atresia/pathology , Pulmonary Atresia/physiopathology , Transcriptome
3.
Sci Rep ; 9(1): 18152, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31796859

ABSTRACT

Phosphorylation of cardiac myosin-binding protein C (cMyBP-C), encoded by MYBPC3, increases the availability of myosin heads for interaction with actin thus enhancing contraction. cMyBP-C phosphorylation level is lower in septal myectomies of patients with hypertrophic cardiomyopathy (HCM) than in non-failing hearts. Here we compared the effect of phosphomimetic (D282) and wild-type (S282) cMyBP-C gene transfer on the HCM phenotype of engineered heart tissues (EHTs) generated from a mouse model carrying a Mybpc3 mutation (KI). KI EHTs showed lower levels of mutant Mybpc3 mRNA and protein, and altered gene expression compared with wild-type (WT) EHTs. Furthermore, KI EHTs exhibited faster spontaneous contractions and higher maximal force and sensitivity to external [Ca2+] under pacing. Adeno-associated virus-mediated gene transfer of D282 and S282 similarly restored Mybpc3 mRNA and protein levels and suppressed mutant Mybpc3 transcripts. Moreover, both exogenous cMyBP-C proteins were properly incorporated in the sarcomere. KI EHTs hypercontractility was similarly prevented by both treatments, but S282 had a stronger effect than D282 to normalize the force-Ca2+-relationship and the expression of dysregulated genes. These findings in an in vitro model indicate that S282 is a better choice than D282 to restore the HCM EHT phenotype. To which extent the results apply to human HCM remains to be seen.


Subject(s)
Cardiomyopathy, Hypertrophic/metabolism , Carrier Proteins/metabolism , Myocardium/metabolism , Animals , Calcium/metabolism , Carrier Proteins/genetics , Heart , Mice , Mutation/genetics , Myocardial Contraction/physiology , Myocytes, Cardiac/metabolism , Phenotype , RNA, Messenger/metabolism , Sarcomeres/metabolism , Tissue Engineering/methods
5.
Stem Cell Res Ther ; 9(1): 165, 2018 06 18.
Article in English | MEDLINE | ID: mdl-29914569

ABSTRACT

BACKGROUND: Human induced pluripotent stem (iPS) cells have revolutionised research and spark hopes for future tissue replacement therapies. To obtain high cell numbers, iPS cells can be expanded indefinitely. However, as long-term expansion can compromise cell integrity and quality, we set out to assess potential reduction of clonal diversity by inherent growth imbalances. METHODS: Using red, green, blue marking as a lentiviral multi-colour clonal cell tracking technology, we marked three different iPS cell lines as well as three other cell lines, assigning a unique fluorescent colour to each cell at one point in culture. Subsequently, we followed the sub-clonal distribution over time by flow cytometry and fluorescence microscopy analysis in regular intervals. RESULTS: In three human iPS cell lines as well as primary human fibroblasts and two widely used human cell lines as controls (K562 and HEK 293 T), we observed a marked reduction in sub-clonal diversity over time of culture (weeks). After 38 passages, all iPS cultures consisted of less than 10 residual clones. Karyotype and function, the latter assessed by cardiomyocyte differentiation and tissue engineering, did not reveal obvious differences. CONCLUSIONS: Our results argue for a quick selection of sub-clones with a growth advantage and flag a normally invisible and potentially undesired behaviour of cultured iPS cells, especially when using long-term cultured iPS cells for experiments or even in-vivo applications.


Subject(s)
Cell Culture Techniques/methods , Induced Pluripotent Stem Cells/metabolism , Cell Differentiation , Cells, Cultured , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...