Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34894529

ABSTRACT

The U.S. EPA frequently uses avian or fish toxicity data to set protective standards for amphibians in ecological risk assessments. However, this approach does not always adequately represent aquatic-dwelling and terrestrial-phase amphibian exposure data. For instance, it is accepted that early life stage tests for fish are typically sensitive enough to protect larval amphibians, however, metamorphosis from tadpole to a terrestrial-phase adult relies on endocrine cues that are less prevalent in fish but essential for amphibian life stage transitions. These differences suggest that more robust approaches are needed to adequately elucidate the impacts of pesticide exposure in amphibians across critical life stages. Therefore, in the current study, methodology is presented that can be applied to link the perturbations in the metabolomic response of larval zebrafish (Danio rerio), a surrogate species frequently used in ecotoxicological studies, to those of African clawed frog (Xenopus laevis) tadpoles following exposure to three high-use pesticides, bifenthrin, chlorothalonil, or trifluralin. Generally, D. rerio exhibited greater metabolic perturbations in both number and magnitude across the pesticide exposures as opposed to X. laevis. This suggests that screening ecological risk assessment surrogate toxicity data would sufficiently protect amphibians at the single life stage studied but care needs to be taken to understand the suite of metabolic requirements of each developing species. Ultimately, methodology presented, and data gathered herein will help inform the applicability of metabolomic profiling in establishing the risk pesticide exposure poses to amphibians and potentially other non-target species.


Subject(s)
Pesticides , Zebrafish , Animals , Larva/physiology , Pesticides/toxicity , Risk Assessment/methods , Xenopus laevis
2.
Environ Sci Technol ; 2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34310120

ABSTRACT

Passive sampling to quantify net partitioning of hydrophobic organic contaminants between the porewater and solid phase has advanced risk management for contaminated sediments. Direct porewater (Cfree) measures represent the best way to predict adverse effects to biota. However, when the need arises to convert between solid-phase concentration (Ctotal) and Cfree, a wide variation in observed sediment-porewater partition coefficients (KTOC) is observed due to intractable complexities in binding phases. We propose a stochastic framework in which a given Ctotal is mapped to an estimated range of Cfree through variability in passive sampling-derived KTOC relationships. This mapping can be used to pair estimated Cfree with biological effects data or inversely to translate a measured or assumed Cfree to an estimated Ctotal. We apply the framework to both an effects threshold for polycyclic aromatic hydrocarbon (PAH) toxicity and an aggregate adverse impact on an assemblage of species. The stochastic framework is based on a "bioavailability ratio" (BR), which reflects the extent to which potency-weighted, aggregate PAH partitioning to the solid-phase is greater than that predicted by default, KOW-based KTOC values. Along a continuum of Ctotal, we use the BR to derive an estimate for the probability that Cfree will exceed a threshold. By explicitly describing the variability of KTOC and BR, estimates of risk posed by sediment-associated contaminants can be more transparent and nuanced.

3.
Integr Environ Assess Manag ; 14(2): 212-223, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29045050

ABSTRACT

The over- or underprediction of risk in moderately contaminated sediments can have a large impact on the nature of applied management strategies given that concentrations border on being toxic or not toxic. Project managers should give significant consideration as to how moderate levels of contaminants in native sediments and dredged material used for restoration will impact recovery of habitat. Total solid-phase (Ctotal ) and porewater (Cfree ) polycyclic aromatic hydrocarbons (PAHs) were quantified in native sediments and dredged material to determine if the predictions of risk from Ctotal are consistent with those based on Cfree . The sediment matrix phase in which PAHs were quantified resulted in disparate conclusions regarding the predicted reduction in contamination following restoration. Total solid-phase PAH concentrations suggested a significant decrease following restoration, whereas little to no change was observed in measured Cfree . Risk metrics based on Ctotal gave inconclusive estimates for toxicity, whereas measured Cfree suggested toxicity is unlikely, a conclusion consistent with toxicity testing. The incorporation of black carbon (BC) into model estimates for Cfree gave predictions more consistent with measured Cfree , suggesting that geochemical conditions (especially BC) play an important part in predicting toxicity at moderately contaminated sites. In addition to the use of Cfree in toxicity evaluation, in-situ Cfree measurements provided a constraint on diffusive PAH loads from sediment relative to ongoing stream loads. If passive sampling had been employed during the sampling designs and site evaluations, the costs of toxicity testing would not have been incurred, given that Cfree suggested little to no toxicity. The results from the project highlight the benefits to be gained by moving beyond inconclusive, screening-level Ctotal metrics and implementing more sensitive and accurate Cfree metrics in assessments of risk in moderately contaminated sediments. Integr Environ Assess Manag 2018;14:212-223. © 2017 SETAC.


Subject(s)
Environmental Monitoring/methods , Polycyclic Aromatic Hydrocarbons/analysis , Solid Phase Microextraction , Water Pollutants, Chemical/analysis , Ecosystem
4.
Chemosphere ; 77(1): 22-8, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19576615

ABSTRACT

The current study measured the degradation of fipronil in laboratory-spiked silt loam sediment under anaerobic conditions at different aging times. The half-life of fipronil in anaerobic sediments spiked at 5.8+/-0.049 and 21+/-1.4microg/kg dry weight (dw) was 21+/-0.22 and 15+/-0.11d, respectively. Fipronil-sulfide was the primary degradation product with fipronil-sulfone detected at lower concentrations. No degradation occurred to fipronil-sulfide and fipronil-sulfone over 200d in separate systems. A concurrent decline in sediment concentrations resulted in a decline of fipronil in sediment porewater with an increase in fipronil-sulfide and fipronil-sulfone measured by matrix-solid phase microextraction (matrix-SPME). Equilibrium among sediment, porewater, and matrix-SPME fiber occurred within 138d for fipronil and fipronil-sulfone; however, fipronil-sulfide did not reach equilibrium during the test, and modeling predicted upwards of 1083d to reach equilibrium. Regardless of the time to reach equilibrium, the rapid degradation of fipronil has little ecological significance given that fipronil-sulfide and fipronil-sulfone have equal or greater toxicity, and exhibit greater environmental stability in both the sediment and porewater, thereby becoming bioavailable.


Subject(s)
Environmental Pollutants/chemistry , Geologic Sediments , Insecticides/chemistry , Pyrazoles/chemistry , Water/chemistry , Anaerobiosis , Environmental Pollutants/isolation & purification , Insecticides/isolation & purification , Porosity , Pyrazoles/isolation & purification , Soil , Solid Phase Microextraction , Time Factors
5.
Talanta ; 78(4-5): 1408-13, 2009 Jun 15.
Article in English | MEDLINE | ID: mdl-19362209

ABSTRACT

Gel permeation chromatography (GPC) and solid phase extraction (SPE) were compared for cleaning extracts containing fipronil, fipronil-sulfide, and fipronil-sulfone at sub-ppb concentrations in sediment. With both methods, analytes were extracted using accelerated solvent extraction, and analyzed with gas chromatography equipped with an electron capture detector. The GPC was performed with a Waters Envirogel GPC column with dichloromethane as the mobile phase, while SPE was conducted with dual-layer cartridges containing graphitized carbon black and primary and secondary amines with a mixture of acetone and hexane as the eluting solvent. Method detection limits for fipronil, fipronil-sulfide, and fipronil-sulfone from three sediments with varying organic carbon content ranged from 0.12 to 0.52 microg/kg dry weight, while percent recoveries were 72-119% from sediment aged from 0.24 to 14d. Although both methods were effective at analyzing fipronil and its degradation products, SPE was the less expensive and less labor-intensive method.


Subject(s)
Chromatography, Gel/standards , Environmental Restoration and Remediation/methods , Geologic Sediments/chemistry , Pyrazoles/isolation & purification , Solid Phase Extraction/standards , Antiparasitic Agents , Chromatography, Gel/economics , Chromatography, Gel/methods , Decontamination/methods , Insecticides , Methods , Solid Phase Extraction/economics , Solid Phase Extraction/methods , Solvents
6.
Environ Toxicol Chem ; 27(12): 2582-90, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18699702

ABSTRACT

Pyrethroids and fipronil insecticides partition to sediment and organic matter in aquatic systems and may pose a risk to organisms that use these matrices. It has been suggested that bioavailability of sediment-sorbed pesticides is reduced, but data on toxicity of sediment-associated pesticides for pyrethroids and fipronil are limited. In the current study, 10-d sediment exposures were conducted with larval Chironomus tentans for bifenthrin, lambda-cyhalothrin, permethrin, fipronil, fipronil-sulfide, and fipronil-sulfone, the last two being common fipronil metabolites. Sublethal endpoints included immobilization, instantaneous growth rate (IGR), body condition index, and growth estimated by ash-free dry mass (AFDM). Pyrethroid lethal concentrations to 50% of the population (LC50s) were 6.2, 2.8, and 24.5 microg/g of organic carbon (OC) for bifenthrin, lambda-cyhalothrin, and permethrin, respectively; with the former two lower than previously published estimates. Fipronil, fipronil-sulfide, and fipronil-sulfone LC50 values were 0.13, 0.16, and 0.12 microg/g of OC, respectively. Ratios of LC50s to sublethal endpoints (immobilization, IGR, and AFDM) ranged from 0.90 to 9.03. The effects on growth observed in the present study are important because of the unique dipteran life cycle involving pupation and emergence events. Growth inhibition would likely lead to ecological impacts similar to mortality (no emergence and thus not reproductively viable) but at concentrations up to 4.3 times lower than the LC50 for some compounds. In addition, C. tentans was highly sensitive to fipronil and metabolites, suggesting that dipterans may be important for estimating risk and understanding effects of phenylpyrazole-class insecticides on benthic macroinvertebrate communities.


Subject(s)
Body Weight/drug effects , Chironomidae/drug effects , Geologic Sediments/chemistry , Pyrazoles/toxicity , Pyrethrins/toxicity , Water Pollutants, Chemical/toxicity , Animals , Biological Assay , Chironomidae/growth & development , Chironomidae/physiology , Chromatography, Gel , Pyrazoles/metabolism , Pyrethrins/metabolism , Quality Control
SELECTION OF CITATIONS
SEARCH DETAIL
...