Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Antimicrob Agents Chemother ; 60(5): 3007-15, 2016 05.
Article in English | MEDLINE | ID: mdl-26953212

ABSTRACT

Linezolid is often the drug of last resort for serious methicillin-resistant Staphylococcus aureus (MRSA) infections. Linezolid resistance is mediated by mutations in 23S rRNA and genes for ribosomal proteins; cfr, encoding phenicol, lincosamide, oxazolidinone, pleuromutilin, and streptogramin A (PhLOPSA) resistance; its homologue cfr(B); or optrA, conferring oxazolidinone and phenicol resistance. Linezolid resistance is rare in S. aureus, and cfr is even rarer. This study investigated the clonality and linezolid resistance mechanisms of two MRSA isolates from patients in separate Irish hospitals. Isolates were subjected to cfr PCR, PhLOPSA susceptibility testing, 23S rRNA PCR and sequencing, DNA microarray profiling, spa typing, pulsed-field gel electrophoresis (PFGE), plasmid curing, and conjugative transfer. Whole-genome sequencing was used for single-nucleotide variant (SNV) analysis, multilocus sequence typing, L protein mutation identification, cfr plasmid sequence analysis, and optrA and cfr(B) detection. Isolates M12/0145 and M13/0401 exhibited linezolid MICs of 64 and 16 mg/liter, respectively, and harbored identical 23S rRNA and L22 mutations, but M12/0145 exhibited the mutation in 2/6 23S rRNA alleles, compared to 1/5 in M13/0401. Both isolates were sequence type 22 MRSA staphylococcal cassette chromosome mec type IV (ST22-MRSA-IV)/spa type t032 isolates, harbored cfr, exhibited the PhLOPSA phenotype, and lacked optrA and cfr(B). They differed by five PFGE bands and 603 SNVs. Isolate M12/0145 harbored cfr and fexA on a 41-kb conjugative pSCFS3-type plasmid, whereas M13/0401 harbored cfr and lsa(B) on a novel 27-kb plasmid. This is the first report of cfr in the pandemic ST22-MRSA-IV clone. Different cfr plasmids and mutations associated with linezolid resistance in genotypically distinct ST22-MRSA-IV isolates highlight that prudent management of linezolid use is essential.


Subject(s)
Methicillin-Resistant Staphylococcus aureus/genetics , Staphylococcus aureus/genetics , Anti-Bacterial Agents/pharmacology , Chromosomes, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics , Methicillin-Resistant Staphylococcus aureus/drug effects , Plasmids/genetics , RNA, Ribosomal, 23S/genetics , Staphylococcal Infections/genetics , Staphylococcus aureus/drug effects
2.
Antimicrob Agents Chemother ; 56(10): 5340-55, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22869569

ABSTRACT

One hundred seventy-five isolates representative of methicillin-resistant Staphylococcus aureus (MRSA) clones that predominated in Irish hospitals between 1971 and 2004 and that previously underwent multilocus sequence typing (MLST) and staphylococcal cassette chromosome mec (SCCmec) typing were characterized by spa typing (175 isolates) and DNA microarray profiling (107 isolates). The isolates belonged to 26 sequence type (ST)-SCCmec types and subtypes and 35 spa types. The array assigned all isolates to the correct MLST clonal complex (CC), and 94% (100/107) were assigned an ST, with 98% (98/100) correlating with MLST. The array assigned all isolates to the correct SCCmec type, but subtyping of only some SCCmec elements was possible. Additional SCCmec/SCC genes or DNA sequence variation not detected by SCCmec typing was detected by array profiling, including the SCC-fusidic acid resistance determinant Q6GD50/fusC. Novel SCCmec/SCC composite islands (CIs) were detected among CC8 isolates and comprised SCCmec IIA-IIE, IVE, IVF, or IVg and a ccrAB4-SCC element with 99% DNA sequence identity to SCC(M1) from ST8/t024-MRSA, SCCmec VIII, and SCC-CI in Staphylococcus epidermidis. The array showed that the majority of isolates harbored one or more superantigen (94%; 100/107) and immune evasion cluster (91%; 97/107) genes. Apart from fusidic acid and trimethoprim resistance, the correlation between isolate antimicrobial resistance phenotype and the presence of specific resistance genes was ≥97%. Array profiling allowed high-throughput, accurate assignment of MRSA to CCs/STs and SCCmec types and provided further evidence of the diversity of SCCmec/SCC. In most cases, array profiling can accurately predict the resistance phenotype of an isolate.


Subject(s)
Bacterial Proteins/genetics , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Oligonucleotide Array Sequence Analysis/methods , Fusidic Acid/pharmacology , Multilocus Sequence Typing , Trimethoprim/pharmacology
3.
Antimicrob Agents Chemother ; 55(5): 1896-905, 2011 May.
Article in English | MEDLINE | ID: mdl-21343442

ABSTRACT

The arginine catabolic mobile element (ACME) is prevalent among methicillin-resistant Staphylococcus aureus (MRSA) isolates of sequence type 8 (ST8) and staphylococcal chromosomal cassette mec (SCCmec) type IVa (USA300) (ST8-MRSA-IVa isolates), and evidence suggests that ACME enhances the ability of ST8-MRSA-IVa to grow and survive on its host. ACME has been identified in a small number of isolates belonging to other MRSA clones but is widespread among coagulase-negative staphylococci (CoNS). This study reports the first description of ACME in two distinct strains of the pandemic ST22-MRSA-IV clone. A total of 238 MRSA isolates recovered in Ireland between 1971 and 2008 were investigated for ACME using a DNA microarray. Twenty-three isolates (9.7%) were ACME positive, and all were either MRSA genotype ST8-MRSA-IVa (7/23, 30%) or MRSA genotype ST22-MRSA-IV (16/23, 70%). Whole-genome sequencing and comprehensive molecular characterization revealed the presence of a novel 46-kb ACME and staphylococcal chromosomal cassette mec (SCCmec) composite island (ACME/SCCmec-CI) in ST22-MRSA-IVh isolates (n=15). This ACME/SCCmec-CI consists of a 12-kb DNA region previously identified in ACME type II in S. epidermidis ATCC 12228, a truncated copy of the J1 region of SCCmec type I, and a complete SCCmec type IVh element. The composite island has a novel genetic organization, with ACME located within orfX and SCCmec located downstream of ACME. One PVL locus-positive ST22-MRSA-IVa isolate carried ACME located downstream of SCCmec type IVa, as previously described in ST8-MRSA-IVa. These results suggest that ACME has been acquired by ST22-MRSA-IV on two independent occasions. At least one of these instances may have involved horizontal transfer and recombination events between MRSA and CoNS. The presence of ACME may enhance dissemination of ST22-MRSA-IV, an already successful MRSA clone.


Subject(s)
Methicillin-Resistant Staphylococcus aureus/genetics , Staphylococcus epidermidis/genetics , Genotype , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction
4.
Antimicrob Agents Chemother ; 54(12): 4978-84, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20921317

ABSTRACT

The staphylococcal cfr gene mediates resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A, a phenotype that has been termed PhLOPS(A). The cfr gene has mainly been associated with coagulase-negative staphylococcal isolates from animals, and only a few cfr-positive methicillin-resistant Staphylococcus aureus (MRSA) isolates have been described so far. This study reports the first description of a cfr-positive MRSA isolate (M05/0060) belonging to the pandemic Panton-Valentine leukocidin (PVL)-positive sequence type 8 MRSA IVa/USA300 (ST8-MRSA-IVa/USA300) clone. The cfr gene was detected in M05/0060 using a DNA microarray which was used to screen PVL-positive MRSA isolates for the presence of virulence genes, typing markers, and antimicrobial resistance genes. Antimicrobial susceptibility testing revealed that M05/0060 exhibited the cfr-associated resistance phenotype. Molecular analysis identified the presence of cfr and a second phenicol resistance gene, fexA, on a novel 45-kb conjugative plasmid, which was designated pSCFS7. Within pSCFS7, a DNA segment consisting of cfr, a truncated copy of insertion sequence IS21-558, and a region with homology to the DNA invertase gene bin3 of transposon Tn552 from Bacillus mycoides was integrated into the transposase gene tnpB of the fexA-carrying transposon Tn558. The emergence of a multidrug-resistant cfr-positive variant of ST8-MRSA-IVa/USA300 is alarming and requires ongoing surveillance. Moreover, the identification of a novel conjugative plasmid carrying the cfr gene indicates the ability of cfr to spread to other MRSA strains.


Subject(s)
Bacterial Proteins/genetics , Bacterial Toxins/genetics , Drug Resistance, Multiple, Bacterial/genetics , Exotoxins/genetics , Leukocidins/genetics , Methicillin Resistance , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Toxins/metabolism , Exotoxins/metabolism , Leukocidins/metabolism , Methicillin Resistance/genetics , Molecular Sequence Data , Plasmids/genetics
5.
Appl Environ Microbiol ; 76(11): 3529-37, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20400565

ABSTRACT

It is well established that the glutamate decarboxylase (GAD) system is central to the survival of Listeria monocytogenes at low pH, both in acidic foods and within the mammalian stomach. The accepted model proposes that under acidic conditions extracellular glutamate is transported into the cell in exchange for an intracellular gamma-aminobutyrate (GABA(i)). The glutamate is then decarboxylated to GABA(i), a reaction that consumes a proton, thereby helping to prevent acidification of the cytoplasm. In this study, we show that glutamate supplementation had no influence on either growth rate at pH 5.0 or survival at pH 2.5 when L. monocytogenes 10403S was grown in a chemically defined medium (DM). In response to acidification, cells grown in DM failed to efflux GABA, even when glutamate was added to the medium. In contrast, in brain heart infusion (BHI), the same strain produced significant extracellular GABA (GABA(e)) in response to acidification. In addition, high levels of GABA(i) (>80 mM) were found in the cytoplasm in response to low pH in both growth media. Medium-swap and medium-mixing experiments revealed that the GABA efflux apparatus was nonfunctional in DM, even when glutamate was present. It was also found that the GadT2D2 antiporter/decarboxylase system was transcribed poorly in DM-grown cultures while overexpression of gadD1T1 and gadD3 occurred in response to pH 3.5. Interestingly, BHI-grown cells did not respond with upregulation of any of the GAD system genes when challenged at pH 3.5. The accumulation of GABA(i) in cells grown in DM in the absence of extracellular glutamate indicates that intracellular glutamate is the source of the GABA(i). These results demonstrate that GABA production can be uncoupled from GABA efflux, a finding that alters the way we should view the operation of bacterial GAD systems.


Subject(s)
Culture Media/chemistry , Cytosol/chemistry , Listeria monocytogenes/physiology , Stress, Physiological , gamma-Aminobutyric Acid/metabolism , Glutamic Acid/metabolism , Hydrogen-Ion Concentration , Listeria monocytogenes/growth & development , Listeria monocytogenes/metabolism , Microbial Viability
6.
J Clin Microbiol ; 48(5): 1839-52, 2010 May.
Article in English | MEDLINE | ID: mdl-20335411

ABSTRACT

ST22-methicillin-resistant Staphylococcus aureus type IV (ST22-MRSA-IV) is endemic in Irish hospitals and is designated antibiogram-resistogram type-pulsed-field group (AR-PFG) 06-01. Isolates of this highly clonal strain exhibit limited numbers of pulsed-field gel electrophoresis (PFGE) patterns and spa types. This study investigated whether combining PFGE and spa typing with DNA sequencing of the staphylococcal cassette chromosome mec element (SCCmec)-associated direct repeat unit (dru typing) would improve isolate discrimination. A total of 173 MRSA isolates recovered in one Irish hospital during periods in 2007 and 2008 were investigated using antibiogram-resistogram (AR), PFGE, spa, dru, and SCCmec typing. Isolates representative of each of the 17 pulsed-field group 01 (PFG-01) spa types identified underwent multilocus sequence typing, and all isolates were ST22. Ninety-seven percent of isolates (168 of 173) exhibited AR-PFG 06-01 or closely related AR patterns, and 163 of these isolates harbored SCCmec type IVh. The combination of PFGE, spa, and dru typing methods significantly improved discrimination of the 168 PFG-01 isolates, yielding 65 type combinations with a Simpson's index of diversity (SID) of 96.53, compared to (i) pairwise combinations of spa and dru typing, spa and PFGE typing, and dru and PFGE typing, which yielded 37, 44, and 43 type combinations with SIDs of 90.84, 91.00, and 93.57, respectively, or (ii) individual spa, dru, and PFGE typing methods, which yielded 17, 17, and 21 types with SIDs of 66.9, 77.83, and 81.34, respectively. Analysis of epidemiological information for a subset of PFG-01 isolates validated the relationships inferred using combined PFGE, spa, and dru typing data. This approach significantly enhances discrimination of ST22-MRSA-IV isolates and could be applied to epidemiological investigations of other highly clonal MRSA strains.


Subject(s)
Bacterial Typing Techniques/methods , DNA Fingerprinting/methods , Methicillin-Resistant Staphylococcus aureus/classification , Methicillin-Resistant Staphylococcus aureus/genetics , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Electrophoresis, Gel, Pulsed-Field , Genotype , Humans , Ireland , Microbial Sensitivity Tests , Sensitivity and Specificity , Sequence Analysis, DNA , Staphylococcal Infections/microbiology , Staphylococcal Protein A/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...