Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Neurochem Int ; 129: 104495, 2019 10.
Article in English | MEDLINE | ID: mdl-31233840

ABSTRACT

Parkinson's disease (PD), a progressive neurodegenerative disorder, has long been associated with mitochondrial dysfunction in both sporadic and familial forms of the disease. Mitochondria are crucial for maintaining cellular homeostasis, and their dysfunction is detrimental to dopaminergic neurons. These neurons are highly dependent on mitochondrial adenosine triphosphate (ATP) and degenerate in PD. Mitochondria contain their own genomes (mtDNA). The role of mtDNA has been investigated in PD on the premise that it encodes vital components of the ATP-generating oxidative phosphorylation (OXPHOS) complexes and accumulates somatic variation with age. However, the association between mtDNA variation and PD remains controversial. Herein, we provide an overview of previously published studies on the role of inherited as well as somatic (acquired) mtDNA changes in PD including point mutations, deletions and depletion. We outline limitations of previous investigations and the difficulties associated with studying mtDNA, which have left its role unresolved in the context of PD. Lastly, we highlight the potential for further research in this field and provide suggestions for future studies. Overall, the mitochondrial genome is indispensable for proper cellular function and its contribution to PD requires further, more extensive investigation.


Subject(s)
DNA, Mitochondrial/genetics , Mitochondria/physiology , Mitochondrial Proteins/physiology , Parkinson Disease/genetics , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Confounding Factors, Epidemiologic , Electron Transport Complex I/drug effects , Forecasting , Gene Dosage , Genes, Mitochondrial , Genetic Predisposition to Disease , Humans , Hybrid Cells , Maternal Inheritance , Mitochondrial Proteins/genetics , Mutation , Oxidative Phosphorylation/drug effects , Parkinson Disease/epidemiology , Parkinson Disease/physiopathology , Research Design , Sequence Deletion
2.
Mov Disord ; 34(9): 1325-1332, 2019 09.
Article in English | MEDLINE | ID: mdl-31234228

ABSTRACT

BACKGROUND: Genetic variation at the microtubule-associated protein tau locus is associated with clinical parkinsonism. However, it is unclear as to whether microtubule-associated protein tau H1 subhaplotypes are associated with the burden of neuropathological features of Lewy body disease. OBJECTIVES: To evaluate associations of microtubule-associated protein tau haplotypes with severity of Lewy body pathology and markers of SN neuronal loss in Lewy body disease cases. METHODS: Five hundred eighty-five autopsy-confirmed Lewy body disease cases were included. Six microtubule-associated protein tau variants (rs1467967, rs242557, rs3785883, rs2471738, rs8070723, and rs7521) were genotyped to define common microtubule-associated protein tau haplotypes. Lewy body counts were measured in five cortical regions. Ventrolateral and medial SN neuronal loss were assessed semiquantitatively. Nigrostriatal dopaminergic degeneration was quantified by image analysis of tyrosine hydroxylase immunoreactivity in the dorsolateral and ventromedial putamen. RESULTS: The common microtubule-associated protein tau H2 haplotype did not show a strong effect on pathological burden in Lewy body disease. The rare H1j haplotype (1.3%) was significantly associated with a lower dorsolateral putaminal tyrosine hydroxylase immunoreactivity (and therefore greater dopaminergic degeneration) compared to other microtubule-associated protein tau haplotypes (P = 0.0016). Microtubule-associated protein tau H1j was also nominally (P ≤ 0.05) associated with a lower ventromedial putaminal tyrosine hydroxylase immunoreactivity (P = 0.010), but this did not survive multiple testing correction. Other nominally significant associations between microtubule-associated protein tau H1 subhaplotypes and neuropathological outcomes were observed. CONCLUSIONS: A rare microtubule-associated protein tau H1 subhaplotype (H1j) may be associated with more severe putaminal dopaminergic degeneration in Lewy body disease cases. Microtubule-associated protein tau H1j has been associated previously with an increased risk of PD, and therefore our exploratory findings provide insight into the mechanism by which H1j modulates PD risk. © 2019 International Parkinson and Movement Disorder Society.


Subject(s)
Lewy Body Disease/genetics , Lewy Body Disease/pathology , tau Proteins/genetics , Aged , Aged, 80 and over , Autopsy , Corpus Striatum/metabolism , Cost of Illness , Dopamine/deficiency , Dopamine/metabolism , Female , Genetic Variation , Haplotypes , Humans , Lewy Bodies/pathology , Male , Middle Aged , Neurofibrillary Tangles/pathology , Neuropathology
3.
JAMA Neurol ; 76(6): 710-717, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30882841

ABSTRACT

Importance: The association between the microtubule-associated protein tau (MAPT) H1 haplotype and the risk of progressive supranuclear palsy (PSP) has been well documented. However, the specific H1 subhaplotypes that drive the association have not been evaluated in large studies, nor have they been studied in relation to neuropathologic severity of disease. Objective: To comprehensively evaluate the associations of MAPT haplotypes with the risk of PSP and the severity of tau pathology using a large series of neuropathologically confirmed PSP cases. Design, Setting, and Participants: A case-control study was used to investigate the associations between MAPT haplotypes and the risk of PSP, and a case series was conducted for examination of associations of MAPT haplotypes with the severity of tau pathology. All 802 neuropathologically confirmed PSP cases were obtained from a neurodegenerative disorders brain bank between January 1, 1998, and December 31, 2013, and 1312 clinical controls were obtained from the neurology department of the Mayo Clinic. Statistical analysis was performed from February 17 to December 12, 2018. Main Outcomes and Measures: Presence of PSP in case-control analysis and semiquantitative tau pathology scores for neurofibrillary tangles, neuropil threads, tufted astrocytes, and oligodendroglial coiled bodies in PSP cases. Results: For 802 patients with PSP (376 women and 426 men), the median age at death was 75 years (range, 52-98 years). For 1312 controls (701 women and 611 men), the median age at blood collection was 69 years (range, 45-92 years). After adjustment for multiple testing, known associations with risk of PSP were observed for the H2 and H1c haplotypes. Novel associations with PSP were observed for 3 H1 subhaplotypes, including H1d (odds ratio, 1.86; 95% CI, 1.43-2.42; P = 2 × 10-6), H1g (odds ratio, 3.64; 95% CI, 2.04-6.50; P = 2 × 10-6), and H1o (odds ratio, 2.60; 95% CI, 1.63-4.16; P = 2 × 10-5). Although not significant after multiple testing adjustment, 3 of these PSP risk haplotypes (H2, H1c, and H1d) were also nominally associated with measures of severity of tau pathology in PSP cases. Nominally significant associations with severity of tau pathology were also noted for the H1e and H1q haplotypes. Conclusions and Relevance: This study has identified novel associations with risk of PSP for 3 MAPT H1 subhaplotypes. In addition, potential weaker associations between several haplotypes (including several PSP risk haplotypes) and severity of tau pathology were observed. These findings expand the current understanding of the role of MAPT haplotypic variation in susceptibility to and neuropathologic severity of PSP.


Subject(s)
Supranuclear Palsy, Progressive/epidemiology , Supranuclear Palsy, Progressive/genetics , Supranuclear Palsy, Progressive/pathology , tau Proteins/genetics , Aged , Aged, 80 and over , Case-Control Studies , Female , Haplotypes , Humans , Male , Middle Aged , Risk , Severity of Illness Index , tau Proteins/metabolism
4.
Hum Genomics ; 13(1): 6, 2019 01 31.
Article in English | MEDLINE | ID: mdl-30704525

ABSTRACT

BACKGROUND: Mitochondrial DNA copy number (mtDNA CN) exhibits interindividual and intercellular variation, but few genome-wide association studies (GWAS) of directly assayed mtDNA CN exist. We undertook a GWAS of qPCR-assayed mtDNA CN in the Avon Longitudinal Study of Parents and Children (ALSPAC) and the UK Blood Service (UKBS) cohort. After validating and harmonising data, 5461 ALSPAC mothers (16-43 years at mtDNA CN assay) and 1338 UKBS females (17-69 years) were included in a meta-analysis. Sensitivity analyses restricted to females with white cell-extracted DNA and adjusted for estimated or assayed cell proportions. Associations were also explored in ALSPAC children and UKBS males. RESULTS: A neutrophil-associated locus approached genome-wide significance (rs709591 [MED24], ß (change in SD units of mtDNA CN per allele) [SE] - 0.084 [0.016], p = 1.54e-07) in the main meta-analysis of adult females. This association was concordant in magnitude and direction in UKBS males and ALSPAC neonates. SNPs in and around ABHD8 were associated with mtDNA CN in ALSPAC neonates (rs10424198, ß [SE] 0.262 [0.034], p = 1.40e-14), but not other study groups. In a meta-analysis of unrelated individuals (N = 11,253), we replicated a published association in TFAM (ß [SE] 0.046 [0.017], p = 0.006), with an effect size much smaller than that observed in the replication analysis of a previous in silico GWAS. CONCLUSIONS: In a hypothesis-generating GWAS, we confirm an association between TFAM and mtDNA CN and present putative loci requiring replication in much larger samples. We discuss the limitations of our work, in terms of measurement error and cellular heterogeneity, and highlight the need for larger studies to better understand nuclear genomic control of mtDNA copy number.


Subject(s)
DNA Copy Number Variations , DNA, Mitochondrial/genetics , Genome-Wide Association Study/methods , Adolescent , Adult , Child , Cohort Studies , Female , Humans , Infant, Newborn , Male , Middle Aged , Polymorphism, Single Nucleotide
6.
Ann Neurol ; 78(6): 1000-4, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26343811

ABSTRACT

The identification of cell-free circulating mitochondrial DNA (ccf-mtDNA) in early-stage Alzheimer's disease (AD) raised the possibility that the same neurodegenerative effect could be observed in Parkinson's disease (PD). Here, and for the first time, we investigated the role of ccf-mtDNA in PD, identifying a significant reduction of ccf-mtDNA in PD patient cerebrospinal fluid (CSF) when compared to controls. Our data demonstrates that CSF ccf-mtDNA is not only a powerful biomarker for PD, but, given that the effect is also observed in AD, is likely a biomarker for neurodegeneration.


Subject(s)
Biomarkers/cerebrospinal fluid , DNA, Mitochondrial/cerebrospinal fluid , Parkinson Disease/cerebrospinal fluid , Aged , Female , Humans , Male , Middle Aged
7.
J Immune Based Ther Vaccines ; 2(1): 6, 2004 May 14.
Article in English | MEDLINE | ID: mdl-15144560

ABSTRACT

BACKGROUND: Polymorphisms in several genes (NOD2, MDR1, SLC22A4) have been associated with susceptibility to Crohn's disease. Identification of the remaining Crohn's susceptibility genes is essential for the development of disease-specific targets for immunotherapy. Using gene expression analysis, we identified a differentially expressed gene on 5q33, the colony stimulating factor 1 receptor (CSF1R) gene, and hypothesized that it is a Crohn's susceptibility gene. The CSF1R gene is involved in monocyte to macrophage differentiation and in innate immunity. METHODS: Patients provided informed consent prior to entry into the study as approved by the Institutional Review Board at LSU Health Sciences Center. We performed forward and reverse sequencing of genomic DNA from 111 unrelated patients with Crohn's disease and 108 controls. We also stained paraffin-embedded, ileal and colonic tissue sections from patients with Crohn's disease and controls with a polyclonal antibody raised against the human CSF1R protein. RESULTS: A single nucleotide polymorphism (A2033T) near a Runx1 binding site in the eleventh intron of the colony stimulating factor 1 receptor was identified. The T allele of this single nucleotide polymorphism occurred in 27% of patients with Crohn's disease but in only 13% of controls (X2 = 6.74, p < 0.01, odds ratio (O.R.) = 2.49, 1.23 < O.R. < 5.01). Using immunohistochemistry, positive staining with a polyclonal antibody to CSF1R was observed in the superficial epithelium of ileal and colonic tissue sections. CONCLUSIONS: We conclude that the colony stimulating factor receptor 1 gene may be a susceptibility gene for Crohn's disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...