Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Phys Rev Lett ; 118(17): 170401, 2017 Apr 28.
Article in English | MEDLINE | ID: mdl-28498688

ABSTRACT

We experimentally study the emergence of antiferromagnetic correlations between ultracold fermionic atoms in a two-dimensional optical lattice with decreasing temperature. We determine the uniform magnetic susceptibility of the two-dimensional Hubbard model from simultaneous measurements of the in situ density distribution of both spin components. At half filling and strong interactions our data approach the Heisenberg model of localized spins with antiferromagnetic correlations. Moreover, we observe a fast decay of magnetic correlations when doping the system away from half filling.

2.
Phys Rev Lett ; 117(13): 135301, 2016 Sep 23.
Article in English | MEDLINE | ID: mdl-27715101

ABSTRACT

The crossover between a metal and a Mott insulator leads to a localization of fermions from delocalized Bloch states to localized states. We experimentally study this crossover using fermionic atoms in an optical lattice by measuring thermodynamic and local (on-site) density correlations. In the metallic phase at incommensurable filling we observe the violation of the local fluctuation-dissipation theorem indicating that the thermodynamics of the system cannot be characterized by local observables alone. In contrast, in the Mott insulator we observe the convergence of local and thermodynamic fluctuations indicating the absence of long-range density-density correlations.

3.
Science ; 336(6088): 1570-3, 2012 Jun 22.
Article in English | MEDLINE | ID: mdl-22604724

ABSTRACT

Long-range interactions in quantum gases are predicted to give rise to an excitation spectrum of roton character, similar to that observed in superfluid helium. We investigated the excitation spectrum of a Bose-Einstein condensate with cavity-mediated long-range interactions, which couple all particles to each other. Increasing the strength of the interaction leads to a softening of an excitation mode at a finite momentum, preceding a superfluid-to-supersolid phase transition. We used a variant of Bragg spectroscopy to study the mode softening across the phase transition. The measured spectrum was in very good agreement with ab initio calculations and, at the phase transition, a diverging susceptibility was observed. The work paves the way toward quantum simulation of long-range interacting many-body systems.

4.
Phys Rev Lett ; 107(14): 140402, 2011 Sep 30.
Article in English | MEDLINE | ID: mdl-22107178

ABSTRACT

We study symmetry breaking at the Dicke quantum phase transition by coupling a motional degree of freedom of a Bose-Einstein condensate to the field of an optical cavity. Using an optical heterodyne detection scheme, we observe symmetry breaking in real time and distinguish the two superradiant phases. We explore the process of symmetry breaking in the presence of a small symmetry-breaking field and study its dependence on the rate at which the critical point is crossed. Coherent switching between the two ordered phases is demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...