Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
J Inherit Metab Dis ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38757337

ABSTRACT

Genomic newborn screening (gNBS) is on the horizon given the decreasing costs of sequencing and the advanced understanding of the impact of genetic variants on health and diseases. Key to ongoing gNBS pilot studies is the selection of target diseases and associated genes to be included. In this study, we present a comprehensive analysis of seven published gene-disease lists from gNBS studies, evaluating gene-disease count, composition, group proportions, and ClinGen curations of individual disorders. Despite shared selection criteria, we observe substantial variation in total gene count (median 480, range 237-889) and disease group composition. An intersection was identified for 53 genes, primarily inherited metabolic diseases (83%, 44/53). Each study investigated a subset of exclusive gene-disease pairs, and the total number of exclusive gene-disease pairs was positively correlated with the total number of genes included per study. While most pairs receive "Definitive" or "Strong" ClinGen classifications, some are labeled as "Refuted" (n = 5) or "Disputed" (n = 28), particularly in genetic cardiac diseases. Importantly, 17%-48% of genes lack ClinGen curation. This study underscores the current absence of consensus recommendations for selection criteria for target diseases for gNBS resulting in diversity in proposed gene-disease pairs, their coupling with gene variations and the use of ClinGen curation. Our findings provide crucial insights into the selection of target diseases and accompanying gene variations for future gNBS program, emphasizing the necessity for ongoing collaboration and discussion about criteria harmonization for panel selection to ensure the screening's objectivity, integrity, and broad acceptance.

2.
J Inherit Metab Dis ; 47(3): 447-462, 2024 May.
Article in English | MEDLINE | ID: mdl-38499966

ABSTRACT

The objective of the study is to evaluate the evolving phenotype and genetic spectrum of patients with succinic semialdehyde dehydrogenase deficiency (SSADHD) in long-term follow-up. Longitudinal clinical and biochemical data of 22 pediatric and 9 adult individuals with SSADHD from the patient registry of the International Working Group on Neurotransmitter related Disorders (iNTD) were studied with in silico analyses, pathogenicity scores and molecular modeling of ALDH5A1 variants. Leading initial symptoms, with onset in infancy, were developmental delay and hypotonia. Year of birth and specific initial symptoms influenced the diagnostic delay. Clinical phenotype of 26 individuals (median 12 years, range 1.8-33.4 years) showed a diversifying course in follow-up: 77% behavioral problems, 76% coordination problems, 73% speech disorders, 58% epileptic seizures and 40% movement disorders. After ataxia, dystonia (19%), chorea (11%) and hypokinesia (15%) were the most frequent movement disorders. Involvement of the dentate nucleus in brain imaging was observed together with movement disorders or coordination problems. Short attention span (78.6%) and distractibility (71.4%) were the most frequently behavior traits mentioned by parents while impulsiveness, problems communicating wishes or needs and compulsive behavior were addressed as strongly interfering with family life. Treatment was mainly aimed to control epileptic seizures and psychiatric symptoms. Four new pathogenic variants were identified. In silico scoring system, protein activity and pathogenicity score revealed a high correlation. A genotype/phenotype correlation was not observed, even in siblings. This study presents the diversifying characteristics of disease phenotype during the disease course, highlighting movement disorders, widens the knowledge on the genotypic spectrum of SSADHD and emphasizes a reliable application of in silico approaches.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Phenotype , Succinate-Semialdehyde Dehydrogenase , Humans , Succinate-Semialdehyde Dehydrogenase/deficiency , Succinate-Semialdehyde Dehydrogenase/genetics , Child , Male , Female , Child, Preschool , Adult , Amino Acid Metabolism, Inborn Errors/genetics , Infant , Adolescent , Young Adult , Developmental Disabilities/genetics , Movement Disorders/genetics , Mutation , Muscle Hypotonia/genetics
3.
Clin Genet ; 105(5): 499-509, 2024 05.
Article in English | MEDLINE | ID: mdl-38221796

ABSTRACT

Hao-Fountain syndrome (HAFOUS, OMIM: #616863) is a neurodevelopmental disorder caused by pathogenic variants in the gene USP7 coding for USP7, a protein involved in several crucial cellular homeostatic mechanisms and the recently described MUST complex. The phenotype of HAFOUS is insufficiently understood, yet there is a great need to better understand the spectrum of disease, genotype-phenotype correlations, and disease trajectories. We now present a larger cohort of 32 additional individuals and provide further clinical information about six previously reported individuals. A questionnaire-based study was performed to characterize the phenotype of Hao-Fountain syndrome more clearly, to highlight new traits, and to better distinguish the disease from related neurodevelopmental disorders. In addition to confirming previously described features, we report hyperphagia and increased body weight in a subset of individuals. HAFOUS patients present an increased rate of birth complications, congenital anomalies, and abnormal pain thresholds. Speech impairment emerges as a potential hallmark of Hao-Fountain syndrome. Cognitive testing reports reveal borderline intellectual functioning on average, although some individuals score in the range of intellectual disability. Finally, we created a syndrome-specific severity score. This score neither indicates a sex- nor age-specific difference of clinical severity, yet highlights a more severe outcome when amino acid changes colocalize to the catalytic domain of the USP7 protein.


Subject(s)
Abnormalities, Multiple , Bone Diseases, Developmental , Craniofacial Abnormalities , Deafness , Intellectual Disability , Neurodevelopmental Disorders , Humans , Ubiquitin-Specific Peptidase 7/genetics , Intellectual Disability/genetics , Intellectual Disability/complications , Abnormalities, Multiple/genetics , Craniofacial Abnormalities/genetics , Neurodevelopmental Disorders/genetics , Phenotype
4.
Life Sci Alliance ; 7(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38238086

ABSTRACT

The X-linked form of Opitz BBB/G syndrome (OS) is a monogenic disorder in which symptoms are established early during embryonic development. OS is caused by pathogenic variants in the X-linked gene MID1 Disease-associated variants are distributed across the entire gene locus, except for the N-terminal really interesting new gene (RING) domain that encompasses the E3 ubiquitin ligase activity. By using genome-edited human induced pluripotent stem cell lines, we here show that absence of isoforms containing the RING domain of MID1 causes severe patterning defects in human brain organoids. We observed a prominent neurogenic deficit with a reduction in neural tissue and a concomitant increase in choroid plexus-like structures. Transcriptome analyses revealed a deregulation of patterning pathways very early on, even preceding neural induction. Notably, the observed phenotypes starkly contrast with those observed in MID1 full-knockout organoids, indicating the presence of a distinct mechanism that underlies the patterning defects. The severity and early onset of these phenotypes could potentially account for the absence of patients carrying pathogenic variants in exon 1 of the MID1 gene coding for the N-terminal RING domain.


Subject(s)
Esophagus , Hypertelorism , Hypospadias , Induced Pluripotent Stem Cells , Nuclear Proteins , Humans , Brain/metabolism , Esophagus/abnormalities , Induced Pluripotent Stem Cells/metabolism , Microtubule Proteins/chemistry , Nuclear Proteins/genetics , Transcription Factors/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
5.
J Med Genet ; 61(2): 132-141, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-37580113

ABSTRACT

BACKGROUND: Pathogenic variants in the zinc finger protein coding genes are rare causes of intellectual disability and congenital malformations. Mutations in the ZNF148 gene causing GDACCF syndrome (global developmental delay, absent or hypoplastic corpus callosum, dysmorphic facies; MIM #617260) have been reported in five individuals so far. METHODS: As a result of an international collaboration using GeneMatcher Phenome Central Repository and personal communications, here we describe the clinical and molecular genetic characteristics of 22 previously unreported individuals. RESULTS: The core clinical phenotype is characterised by developmental delay particularly in the domain of speech development, postnatal growth retardation, microcephaly and facial dysmorphism. Corpus callosum abnormalities appear less frequently than suggested by previous observations. The identified mutations concerned nonsense or frameshift variants that were mainly located in the last exon of the ZNF148 gene. Heterozygous deletion including the entire ZNF148 gene was found in only one case. Most mutations occurred de novo, but were inherited from an affected parent in two families. CONCLUSION: The GDACCF syndrome is clinically diverse, and a genotype-first approach, that is, exome sequencing is recommended for establishing a genetic diagnosis rather than a phenotype-first approach. However, the syndrome may be suspected based on some recurrent, recognisable features. Corpus callosum anomalies were not as constant as previously suggested, we therefore recommend to replace the term 'GDACCF syndrome' with 'ZNF148-related neurodevelopmental disorder'.


Subject(s)
Intellectual Disability , Leukoencephalopathies , Humans , Child , Corpus Callosum , Facies , Mutation/genetics , Phenotype , Genotype , Intellectual Disability/genetics , Intellectual Disability/diagnosis , Syndrome , Developmental Disabilities/pathology , DNA-Binding Proteins/genetics , Transcription Factors/genetics
6.
Article in German | MEDLINE | ID: mdl-37831095

ABSTRACT

The application of high-throughput sequencing methods for population-based genomic newborn screening offers numerous opportunities for improving population health. The use of genome-based sequencing technology holds potential to enable the diagnosis of virtually any genetic disorder at an early stage and offers great flexibility when it comes to selection and expansion of target diseases. National and international efforts are therefore being made to investigate the ethical, legal, social, psychological, and technical aspects of genomic newborn screening. In addition to the many opportunities, there are numerous challenges and questions that remain to be answered: When and how should legal guardians be informed about such screening? Which diseases should be screened for? How should incidental findings or identification of a genetic predisposition be dealt with? Should data be stored long term and if so, how can this be done securely? Provided there is an appropriate regulatory framework and a transparent consent process, genomic newborn screening has the potential to fundamentally change the way in which we screen for congenital diseases. However, there is still much to be done. To achieve understanding and acceptance of genomic newborn screening amongst all stakeholders and thus to maximize its benefits for the population, a public discourse on the possibilities and limitations of genomic newborn screening is of critical importance. This article aims to provide an overview of the innovative technical developments in the field of human genetics, describe national and international approaches, and discuss challenges and opportunities of genomic newborn screening development.


Subject(s)
Genetic Testing , Neonatal Screening , Infant, Newborn , Humans , Germany , Genomics , Genetic Predisposition to Disease/genetics
7.
J Inherit Metab Dis ; 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37402126

ABSTRACT

The autosomal recessive defect of aromatic L-amino acid decarboxylase (AADC) leads to a severe neurological disorder with manifestation in infancy due to a pronounced, combined deficiency of dopamine, serotonin and catecholamines. The success of conventional drug treatment is very limited, especially in patients with a severe phenotype. The development of an intracerebral AAV2-based gene delivery targeting the putamen or substantia nigra started more than 10 years ago. Recently, the putaminally-delivered construct, Eladocagene exuparvovec has been approved by the European Medicines Agency and by the British Medicines and Healthcare products Regulatory Agency. This now available gene therapy provides for the first time also for AADC deficiency (AADCD) a causal therapy, leading this disorder into a new therapeutic era. By using a standardized Delphi approach members of the International Working Group on Neurotransmitter related Disorders (iNTD) developed structural requirements and recommendations for the preparation, management and follow-up of AADC deficiency patients who undergo gene therapy. This statement underlines the necessity of a framework for a quality-assured application of AADCD gene therapy including Eladocagene exuparvovec. Treatment requires prehospital, inpatient and posthospital care by a multidisciplinary team in a specialized and qualified therapy center. Due to lack of data on long-term outcomes and the comparative efficacy of alternative stereotactic procedures and brain target sites, a structured follow-up plan and systematic documentation of outcomes in a suitable, industry-independent registry study are necessary.

9.
Comput Struct Biotechnol J ; 21: 1077-1083, 2023.
Article in English | MEDLINE | ID: mdl-36789265

ABSTRACT

The widespread use of high-throughput sequencing techniques is leading to a rapidly increasing number of disease-associated variants of unknown significance and candidate genes. Integration of knowledge concerning their genetic, protein as well as functional and conservational aspects is necessary for an exhaustive assessment of their relevance and for prioritization of further clinical and functional studies investigating their role in human disease. To collect the necessary information, a multitude of different databases has to be accessed and data extraction from the original sources commonly is not user-friendly and requires advanced bioinformatics skills. This leads to a decreased data accessibility for a relevant number of potential users such as clinicians, geneticist, and clinical researchers. Here, we present aRgus (https://argus.urz.uni-heidelberg.de/), a standalone webtool for simple extraction and intuitive visualization of multi-layered gene, protein, variant, and variant effect prediction data. aRgus provides interactive exploitation of these data within seconds for any known gene of the human genome. In contrast to existing online platforms for compilation of variant data, aRgus complements visualization of chromosomal exon-intron structure and protein domain annotation with ClinVar and gnomAD variant distributions as well as position-specific variant effect prediction score modeling. aRgus thereby enables timely assessment of protein regions vulnerable to variation with single amino acid resolution and provides numerous applications in variant and protein domain interpretation as well as in the design of in vitro experiments.

10.
Genet Med ; 25(6): 100314, 2023 06.
Article in English | MEDLINE | ID: mdl-36305855

ABSTRACT

PURPOSE: This study aimed to define the genotypic and phenotypic spectrum of reversible acute liver failure (ALF) of infancy resulting from biallelic pathogenic TRMU variants and determine the role of cysteine supplementation in its treatment. METHODS: Individuals with biallelic (likely) pathogenic variants in TRMU were studied within an international retrospective collection of de-identified patient data. RESULTS: In 62 individuals, including 30 previously unreported cases, we described 47 (likely) pathogenic TRMU variants, of which 17 were novel, and 1 intragenic deletion. Of these 62 individuals, 42 were alive at a median age of 6.8 (0.6-22) years after a median follow-up of 3.6 (0.1-22) years. The most frequent finding, occurring in all but 2 individuals, was liver involvement. ALF occurred only in the first year of life and was reported in 43 of 62 individuals; 11 of whom received liver transplantation. Loss-of-function TRMU variants were associated with poor survival. Supplementation with at least 1 cysteine source, typically N-acetylcysteine, improved survival significantly. Neurodevelopmental delay was observed in 11 individuals and persisted in 4 of the survivors, but we were unable to determine whether this was a primary or a secondary consequence of TRMU deficiency. CONCLUSION: In most patients, TRMU-associated ALF was a transient, reversible disease and cysteine supplementation improved survival.


Subject(s)
Liver Failure, Acute , Liver Failure , Adolescent , Child , Child, Preschool , Humans , Infant , Young Adult , Acetylcysteine/therapeutic use , Liver Failure/drug therapy , Liver Failure/genetics , Liver Failure, Acute/drug therapy , Liver Failure, Acute/genetics , Mitochondrial Proteins/genetics , Mutation , Retrospective Studies , tRNA Methyltransferases/genetics
12.
Children (Basel) ; 9(5)2022 May 12.
Article in English | MEDLINE | ID: mdl-35626889

ABSTRACT

(1) Background: Phenotypic diversity and long-term health outcomes of individuals with urea cycle disorders (UCDs) have been described in detail. However, there is limited information on the burden on affected families. (2) Methods: To evaluate the family burden in parents with children suffering from UCDs, we used validated questionnaires. Socio-demographic characteristics were evaluated, and an adapted version of the Parental Need Scale for Rare Diseases questionnaire was used. The survey was conducted in families of UCD patients cared for at the University Children's Hospital Heidelberg. (3) Results: From April to November 2021, 59 participants were interviewed (mothers n = 34, fathers n = 25). The affected patients most frequently suffered from ornithine transcarbamylase deficiency (OTC-D) (female n = 12, male n = 12), followed by argininosuccinate synthetase deficiency (ASS-D, n = 13) and argininosuccinate lyase deficiency (ASL-D, n = 8). About one-third of the participants were "dissatisfied" or "extremely dissatisfied" with health professionals' disease knowledge. In addition, 30% of the participants reported a medium or high need for "additional information on the development of their children", and 44% reported a medium or high need "for information on available services". A majority of 68% reported a need for additional support regarding services such as support groups (42%) or psychological counseling (29%). (4) Conclusions: Our study indicates that there is an unmet need for sufficient information about the development of children with UCDs, as well as for information about available support services for families with UCD patients. Furthermore, the results highlight the importance of establishing or improving family-centered care approaches. This pilot study may serve as a template for the assessment of the family burden associated with other inherited metabolic diseases.

13.
Eur J Hum Genet ; 30(3): 298-306, 2022 03.
Article in English | MEDLINE | ID: mdl-35017693

ABSTRACT

TUBA1A tubulinopathy is a rare neurodevelopmental disorder associated with brain malformations as well as early-onset and intractable epilepsy. As pathomechanisms and genotype-phenotype correlations are not completely understood, we aimed to provide further insights into the phenotypic and genetic spectrum. We here present a multicenter case series of ten unrelated individuals from four European countries using systematic MRI re-evaluation, protein structure analysis, and prediction score modeling. In two cases, pregnancy was terminated due to brain malformations. Amongst the eight living individuals, the phenotypic range showed various severity. Global developmental delay and severe motor impairment with tetraparesis was present in 63% and 50% of the subjects, respectively. Epilepsy was observed in 75% of the cases, which showed infantile onset in 83% and a refractory course in 50%. One individual presented a novel TUBA1A-associated electroclinical phenotype with evolvement from early myoclonic encephalopathy to continuous spike-and-wave during sleep. Neuroradiological features comprised a heterogeneous spectrum of cortical and extracortical malformations including rare findings such as cobblestone lissencephaly and subcortical band heterotopia. Two individuals developed hydrocephalus with subsequent posterior infarction. We report four novel and five previously published TUBA1A missense variants whose resulting amino acid substitutions likely affect longitudinal, lateral, and motor protein interactions as well as GTP binding. Assessment of pathogenic and benign variant distributions in synopsis with prediction scores revealed sections of variant enrichment and intolerance to missense variation. We here extend the clinical, neuroradiological, and genetic spectrum of TUBA1A tubulinopathy and provide insights into residue-specific pathomechanisms and genotype-phenotype correlations.


Subject(s)
Epilepsy , Lissencephaly , Nervous System Malformations , Epilepsy/diagnosis , Epilepsy/genetics , Female , Humans , Lissencephaly/genetics , Mutation , Mutation, Missense , Phenotype , Pregnancy , Tubulin/genetics
14.
Lancet Child Adolesc Health ; 6(1): 17-27, 2022 01.
Article in English | MEDLINE | ID: mdl-34756190

ABSTRACT

BACKGROUND: Given the novelty of gene replacement therapy with onasemnogene abeparvovec in spinal muscular atrophy, efficacy and safety data are limited, especially for children older than 24 months, those weighing more than 8·5 kg, and those who have received nusinersen. We aimed to provide real-world data on motor function and safety after gene replacement therapy in different patient subgroups. METHODS: We did a protocol-based, multicentre prospective observational study between Sept 21, 2019, and April 20, 2021, in 18 paediatric neuromuscular centres in Germany and Austria. All children with spinal muscular atrophy types 1 and 2 receiving onasemnogene abeparvovec were included in our cohort, and there were no specific exclusion criteria. Motor function was assessed at the time of gene replacement therapy and 6 months afterwards, using the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND) and Hammersmith Functional Motor Scale-Expanded (HFMSE) scores. Additionally, in children pretreated with nusinersen, motor function was assessed before and after treatment switch. Off-target adverse events were analysed with a focus on liver function, thrombocytopaenia, and potential cardiotoxicity. FINDINGS: 76 children (58 pretreated with nusinersen and 18 who were nusinersen naive) with spinal muscular atrophy were treated with onasemnogene abeparvovec at a mean age of 16·8 months (range 0·8-59·0, IQR 9-23) and a mean weight of 9·1 kg (range 4·0-15·0, IQR 7·4-10·6). In 60 patients with available data, 49 had a significant improvement on the CHOP-INTEND score (≥4 points) and HFMSE score (≥3 points). Mean CHOP INTEND scores increased significantly in the 6 months after therapy in children younger than 8 months (n=16; mean change 13·8 [SD 8·5]; p<0·0001) and children aged between 8 and 24 months (n=34; 7·7 [SD 5·2]; p<0·0001), but not in children older than 24 months (n=6; 2·5 [SD 5·2]; p=1·00). In the 45 children pretreated with nusinersen and had available data, CHOP INTEND score increased by 8·8 points (p=0·0003) at 6 months after gene replacement therapy. No acute complications occurred during infusion of onasemnogene abeparvovec, but 56 (74%) patients had treatment-related side-effects. Serious adverse events occurred in eight (11%) children. Liver enzyme elevation significantly increased with age and weight at treatment. Six (8%) patients developed acute liver dysfunction. Other adverse events included pyrexia (n=47 [62%]), vomiting or loss of appetite (41 [54%]), and thrombocytopenia (n=59 [78%]). Prednisolone treatment was significantly prolonged with a mean duration of 15·7 weeks (IQR 9-19), mainly due to liver enzyme elevation. Cardiac adverse events were rare; only two patients had abnormal echocardiogram and echocardiography findings. INTERPRETATION: This study provides class IV evidence that children with spinal muscular atrophy aged 24 months or younger and patients pretreated with nusinersen significantly benefit from gene replacement therapy, but adverse events can be severe and need to be closely monitored. FUNDING: None. TRANSLATION: For the German translation of the abstract see Supplementary Materials section.


Subject(s)
Body Weight/physiology , Genetic Therapy , Muscular Atrophy, Spinal/drug therapy , Oligonucleotides , Age Factors , Austria , Child, Preschool , Female , Germany , Humans , Infant , Male , Oligonucleotides/adverse effects , Oligonucleotides/therapeutic use , Prospective Studies , Surveys and Questionnaires
15.
Mol Genet Metab ; 134(1-2): 147-155, 2021.
Article in English | MEDLINE | ID: mdl-34479793

ABSTRACT

Compound heterozygosis is the most diffuse and hardly to tackle condition in aromatic amino acid decarboxylase (AADC) deficiency, a genetic disease leading to severe neurological impairment. Here, by using an appropriate vector, we succeeded in obtaining high yields of AADC protein and characterizing two new heterodimers, T69M/S147R and C281W/M362T, detected in two AADC deficiency patients. We performed an extensive biochemical characterization of the heterodimeric recombinant proteins and of the related homodimers, by a combination of dichroic and fluorescence spectroscopy and activity assays together with bioinformatic analyses. We found that T69M/S147R exhibits negative complementation in terms of activity but it is more stable than the average of the homodimeric counterparts. The heterodimer C281W/M362T retains a nearly good catalytic efficiency, whereas M362T homodimer is less affected and C281W homodimer is recovered as insoluble. These results, which are consistent with the related phenotypes, and the data emerging from previous studies, suggest that the severity of AADC deficiency is not directly explained by positive or negative complementation phenomena, but rather depends on: i) the integrity of one or both active sites; ii) the structural and functional properties of the entire pool of AADC proteins expressed. Overall, this integrated and cross-sectional approach enables proper characterization and depicts the functional result of subunit interactions in the dimeric structure and will help to elucidate the physio-pathological mechanisms in AADC deficiency.


Subject(s)
Amino Acid Metabolism, Inborn Errors/genetics , Aromatic-L-Amino-Acid Decarboxylases/deficiency , Heterozygote , Phenotype , Adolescent , Adult , Aromatic-L-Amino-Acid Decarboxylases/genetics , Computational Biology , Female , Humans , Male , Mutation , Recombinant Proteins , Young Adult
16.
J Inherit Metab Dis ; 44(6): 1489-1502, 2021 11.
Article in English | MEDLINE | ID: mdl-34245036

ABSTRACT

Inherited disorders of neurotransmitter metabolism are a group of rare diseases, which are caused by impaired synthesis, transport, or degradation of neurotransmitters or cofactors and result in various degrees of delayed or impaired psychomotor development. To assess the effect of neurotransmitter deficiencies on intelligence, quality of life, and behavior, the data of 148 patients in the registry of the International Working Group on Neurotransmitter Related Disorders (iNTD) was evaluated using results from standardized age-adjusted tests and questionnaires. Patients with a primary disorder of monoamine metabolism had lower IQ scores (mean IQ 58, range 40-100) within the range of cognitive impairment (<70) compared to patients with a BH4 deficiency (mean IQ 84, range 40-129). Short attention span and distractibility were most frequently mentioned by parents, while patients reported most frequently anxiety and distractibility when asked for behavioral traits. In individuals with succinic semialdehyde dehydrogenase deficiency, self-stimulatory behaviors were commonly reported by parents, whereas in patients with dopamine transporter deficiency, DNAJC12 deficiency, and monoamine oxidase A deficiency, self-injurious or mutilating behaviors have commonly been observed. Phobic fears were increased in patients with 6-pyruvoyltetrahydropterin synthase deficiency, while individuals with sepiapterin reductase deficiency frequently experienced communication and sleep difficulties. Patients with BH4 deficiencies achieved significantly higher quality of life as compared to other groups. This analysis of the iNTD registry data highlights: (a) difference in IQ and subdomains of quality of life between BH4 deficiencies and primary neurotransmitter-related disorders and (b) previously underreported behavioral traits.


Subject(s)
Neurotransmitter Agents/deficiency , Phenotype , Quality of Life , Adolescent , Adult , Behavior , Child , Child, Preschool , Cognitive Dysfunction/etiology , Female , Humans , Infant , Intelligence , Internationality , Male , Middle Aged , Registries , Young Adult
17.
BMJ Open ; 11(6): e046359, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34130960

ABSTRACT

OBJECTIVE: To investigate reported extreme temperature-related catastrophic events and associated mortality on the European continent including the Russian Federation. DESIGN: Cross-sectional respecting Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) criteria. SETTINGS: Data source: Emergency Events Database (EM-DAT). PARTICIPANTS: Search criteria: location-European continent including Russian Federation, time-years 1988 until 2019 (close of database 12 July 2019), catastrophic events-extreme temperatures. PRIMARY OUTCOME MEASURES: Numbers of heat waves, cold waves, severe winter conditions and associated number of deaths, overall, and per country and year, respecting STROBE criteria. RESULTS: The most frequent type of the 243 events recorded in EM-DAT were cold waves (54.7%). However, cold waves and severe winter conditions only accounted for 6460 deaths (4.5%), while heat waves were associated with 137 533 deaths (95.5%). The five most severe heat waves in 2003, 2006, 2010, 2013 and 2015 were associated with a total of 135 089 deaths. The most severe heat waves were geographically distributed over the Russian Federation (2010), as well as France, Italy, Spain and Germany, each in 2003. CONCLUSION: Although cold waves are more frequently reported in EM-DAT, heat waves are the major cause for temperature-related deaths. In order to better protect the public, it is important to address resiliency and vulnerability of populations at risk and age groups.


Subject(s)
Cold Temperature , Hot Temperature , Cross-Sectional Studies , Europe/epidemiology , France , Germany , Humans , Italy , Mortality , Russia , Spain , Temperature
18.
Hum Mutat ; 42(9): 1094-1100, 2021 09.
Article in English | MEDLINE | ID: mdl-34157790

ABSTRACT

SYNCRIP encodes for the Synaptotagmin-binding cytoplasmic RNA-interacting protein, involved in RNA-binding and regulation of multiple cellular pathways. It has been proposed as a candidate gene for neurodevelopmental disorders (NDDs) with autism spectrum disorder (ASD), intellectual disability (ID), and epilepsy. We ascertained genetic, clinical, and neuroradiological data of three additional individuals with novel de novo SYNCRIP variants. All individuals had ID. Autistic features were observed in two. One individual showed myoclonic-atonic epilepsy. Neuroradiological features comprised periventricular nodular heterotopia and widening of subarachnoid spaces. Two frameshift variants in the more severely affected individuals, likely result in haploinsufficiency. The third missense variant lies in the conserved RNA recognition motif (RRM) 2 domain likely affecting RNA-binding. Our findings support the importance of RRM domains for SYNCRIP functionality and suggest genotype-phenotype correlations. Our study provides further evidence for a SYNCRIP-associated NDD characterized by ID and ASD sporadically accompanied by malformations of cortical development and myoclonic-atonic epilepsy.


Subject(s)
Autism Spectrum Disorder , Epilepsy , Intellectual Disability , Neurodevelopmental Disorders , Autism Spectrum Disorder/genetics , Epilepsy/complications , Epilepsy/genetics , Haploinsufficiency , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Humans , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics
20.
J Inherit Metab Dis ; 44(5): 1272-1287, 2021 09.
Article in English | MEDLINE | ID: mdl-34145613

ABSTRACT

Mevalonic aciduria (MVA) and hyperimmunoglobulinemia D syndrome (MKD/HIDS) are disorders of cholesterol biosynthesis caused by variants in the MVK gene and characterized by increased urinary excretion of mevalonic acid. So far, 30 MVA patients have been reported, suffering from recurrent febrile crises and neurologic impairment. Here, we present an in-depth analysis of the phenotypic spectrum of MVA and provide an in-silico pathogenicity model analysis of MVK missense variants. The phenotypic spectrum of 11 MVA patients (age range 0-51 years) registered in the Unified European Registry for Inherited Metabolic Disorders database was systematically analyzed using terms of the Human Phenotype Ontology. Biochemical, radiological as well as genetic characteristics were investigated. Six of eleven patients have reached adulthood and four have reached adolescence. One of the adolescent patients died at the age of 16 years and one patient died shortly after birth. Symptoms started within the first year of life, including episodic fever, developmental delay, ataxia, and ocular involvement. We also describe a case with absence of symptoms despite massive excretion of mevalonic acid. Pathogenic variants causing MVA cluster within highly conserved regions, which are involved in mevalonate and ATP binding. The phenotype of adult and adolescent MVA patients is more heterogeneous than previously assumed. Outcome varies from an asymptomatic course to early death. MVK variants cluster in functionally important and highly conserved protein domains and show high concordance regarding their expected pathogenicity.


Subject(s)
Mevalonate Kinase Deficiency/pathology , Mevalonic Acid/metabolism , Mutation, Missense , Phosphotransferases (Alcohol Group Acceptor)/genetics , Adolescent , Adult , Disease Progression , Female , Humans , Male , Mevalonate Kinase Deficiency/metabolism , Mevalonic Acid/urine , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...