Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cells ; 11(9)2022 04 30.
Article in English | MEDLINE | ID: mdl-35563820

ABSTRACT

Immune checkpoint blockade (ICB) therapy is a central pillar of melanoma treatment leading to durable response rates. Important mechanisms of action of ICB therapy include disinhibition of CD4+ and CD8+ T cells. Stimulated CD4+ T helper 1 cells secrete the effector cytokines interferon-gamma (IFN-γ) and tumor necrosis factor alpha (TNF), which induce senescence in tumor cells. Besides being growth-arrested, senescent cells are metabolically active and secrete a large spectrum of factors, which are summarized as senescence-associated secretory phenotype (SASP). This secretome affects the tumor growth. Here, we compared the SASP of cytokine-induced senescent (CIS) cells with the SASP of therapy-induced senescent (TIS) cells. Therefore, we established in vitro models for CIS and TIS in melanoma. The human melanoma cell lines SK-MEL-28 and WM115 were treated with the cytokines IFN-γ and TNF as CIS, the chemotherapeutic agent doxorubicin, and the cell cycle inhibitor palbociclib as TIS. Then, we determined several senescence markers, i.e., growth arrest, p21 expression, and senescence-associated ß-galactosidase (SA-ß-gal) activity. For SASP analyses, we measured the regulation and secretion of several common SASP factors using qPCR arrays, protein arrays, and ELISA. Each treatment initiated a stable growth arrest, enhanced SA-ß-gal activity, and-except palbociclib-increased the expression of p21. mRNA and protein analyses revealed that gene expression and secretion of SASP factors were severalfold stronger in CIS than in TIS. Finally, we showed that treatment with the conditioned media (CM) derived from cytokine- and palbociclib-treated cells induced senescence characteristics in melanoma cells. Thus, we conclude that senescence induction via cytokines may lead to self-sustaining senescence surveillance of melanoma.


Subject(s)
Interferon-gamma/metabolism , Melanoma , Senescence-Associated Secretory Phenotype , Tumor Necrosis Factor-alpha/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cellular Senescence , Humans , Melanoma/pathology
2.
J Invest Dermatol ; 142(8): 2055-2060, 2022 08.
Article in English | MEDLINE | ID: mdl-35339277

ABSTRACT

Melanomas are malignant tumors that can partly and very rarely completely regress in response to immune responses. Analyzing the mechanisms underlying this immune-mediated rejection, melanomas became leading in developing general cancer immunotherapy. This resulted in the discovery of tumor-specific neoantigens and mutations autoantigens, now called tumor-associated antigens, and their specific recognition by cytotoxic T lymphocytes. Melanomas were of key importance for the development of adoptive T-cell therapy and active tumor vaccines, namely dendritic cell vaccines. Melanoma therapy with antibodies against CTLA-4 provided the proof of concept that solid cancers can be susceptible to cancer immunotherapy, and melanoma therapy with antibodies against PD-1 resulted in the clinical breakthrough of cancer immunotherapy. Still, about half of patients die from metastatic melanoma. Combining anti‒PD-1 with anti‒CTLA-4 antibodies to increase antitumor immune responses or with targeted therapy improves the overall survival only partially. Recent data revealed a close link between defects in the IFN-γ‒dependent induction of cell cycle control genes and resistance to immunotherapy, which may allow for identifying those patients that respond to immunotherapy and to develop novel therapies, combining cancer immunotherapy with cell cycle inhibitors.


Subject(s)
Immunotherapy , Melanoma , Antigens, Neoplasm , Humans , Immunotherapy/methods , Immunotherapy, Adoptive , Melanoma/drug therapy , T-Lymphocytes, Cytotoxic
3.
J Immunother Cancer ; 9(1)2021 01.
Article in English | MEDLINE | ID: mdl-33441389

ABSTRACT

BACKGROUND: Although antibodies blocking immune checkpoints have already been approved for clinical cancer treatment, the mechanisms involved are not yet completely elucidated. Here we used a λ-MYC transgenic model of endogenously growing B-cell lymphoma to analyze the requirements for effective therapy with immune checkpoint inhibitors. METHODS: Growth of spontaneous lymphoma was monitored in mice that received antibodies targeting programmed cell death protein 1 and cytotoxic T lymphocyte-associated protein-4, and the role of different immune cell compartments and cytokines was studied by in vivo depletion experiments. Activation of T and natural killer cells and the induction of tumor senescence were analyzed by flow cytometry. RESULTS: On immune checkpoint blockade, visible lymphomas developed at later time points than in untreated controls, indicating an enhanced tumor control. Importantly, 20% to 30% of mice were even long-term protected and did never develop clinical signs of tumor growth. The therapeutic effect was dependent on cytokine-induced senescence in malignant B cells. The proinflammatory cytokines interferon-γ (IFN-γ) and tumor necrosis factor (TNF) were necessary for the survival benefit as well as for senescence induction in the λ-MYC model. Antibody therapy improved T-cell functions such as cytokine production, and long-time survivors were only observed in the presence of T cells. Yet, NK cells also had a pronounced effect on therapy-induced delay of tumor growth. Antibody treatment enhanced numbers, proliferation and IFN-γ expression of NK cells in developing tumors. The therapeutic effect was fully abrogated only after depletion of both, T cells and NK cells, or after ablation of either IFN-γ or TNF. CONCLUSIONS: Tumor cell senescence may explain why patients responding to immune checkpoint blockade frequently show stable growth arrest of tumors rather than complete tumor regression. In the lymphoma model studied, successful therapy required both, tumor-directed T-cell responses and NK cells, which control, at least partly, tumor development through cytokine-induced tumor senescence.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Cytokines/metabolism , Immune Checkpoint Inhibitors/administration & dosage , Killer Cells, Natural/drug effects , Lymphoma/drug therapy , Nivolumab/administration & dosage , T-Lymphocytes/drug effects , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Cell Proliferation , Cellular Senescence , Humans , Immune Checkpoint Inhibitors/pharmacology , Interferon-gamma/metabolism , Killer Cells, Natural/immunology , Lymphoma/immunology , Mice , Nivolumab/pharmacology , T-Lymphocytes/immunology , Treatment Outcome , Tumor Necrosis Factor-alpha/metabolism , Xenograft Model Antitumor Assays
4.
Nat Commun ; 11(1): 1335, 2020 03 12.
Article in English | MEDLINE | ID: mdl-32165639

ABSTRACT

Immune checkpoint blockade (ICB)-based or natural cancer immune responses largely eliminate tumours. Yet, they require additional mechanisms to arrest those cancer cells that are not rejected. Cytokine-induced senescence (CIS) can stably arrest cancer cells, suggesting that interferon-dependent induction of senescence-inducing cell cycle regulators is needed to control those cancer cells that escape from killing. Here we report in two different cancers sensitive to T cell-mediated rejection, that deletion of the senescence-inducing cell cycle regulators p16Ink4a/p19Arf (Cdkn2a) or p21Cip1 (Cdkn1a) in the tumour cells abrogates both the natural and the ICB-induced cancer immune control. Also in humans, melanoma metastases that progressed rapidly during ICB have losses of senescence-inducing genes and amplifications of senescence inhibitors. Metastatic cells also resist CIS. Such genetic and functional alterations are infrequent in metastatic melanomas regressing during ICB. Thus, activation of tumour-intrinsic, senescence-inducing cell cycle regulators is required to stably arrest cancer cells that escape from eradication.


Subject(s)
Cell Cycle , Cellular Senescence , Interferons/metabolism , Melanoma/immunology , Melanoma/pathology , Animals , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Humans , Immunotherapy , Ki-67 Antigen/metabolism , Lymph Nodes/pathology , Melanoma/therapy , Melanoma/ultrastructure , Mice , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism , STAT1 Transcription Factor/metabolism , Survival Analysis , Tumor Burden
5.
Cell Physiol Biochem ; 51(3): 1103-1118, 2018.
Article in English | MEDLINE | ID: mdl-30476917

ABSTRACT

BACKGROUND/AIMS: Cellular senescence, or permanent growth arrest, is known as an effective tumor suppressor mechanism that can be induced by different stressors, such as oncogenes, chemotherapeutics or cytokine cocktails. Previous studies demonstrated that the growth-repressing state of oncogene-induced senescent cells depends on argonaute protein 2 (Ago2)-mediated transcriptional gene silencing and Ago2/Rb corepression of E2F-dependent cell cycle genes. Cytokine-induced senescence (CIS) likewise depends on activation of the p16Ink4a/Rb pathway, and consecutive inactivation of the E2F family of transcription factors. In the present study, we therefore analyzed the role of Ago2 in CIS. METHODS: Human cancer cell lines were treated with interferon-gamma (IFN-γ) and tumor necrosis factor (TNF) to induce senescence. Senescence was determined by growth assays and measurement of senescence-associated ß-galactosidase (SA-ß-gal) activity, Ago2 translocation by Ago2/ Ki67 immunofluorescence staining and western blot analysis, and gene transcription by quantitative polymerase chain reaction (qPCR). RESULTS: IFN-γ and TNF permanently stopped cell proliferation and time-dependently increased SA-ß-gal activity. After 24 - 48 h of cytokine treatment, Ago2 translocated from the cytoplasm into the nucleus of Ki67-negative cells, an effect which was shown to be reversible. Importantly, the proinflammatory cytokine cocktail suppressed Ago2-regulated cell cycle control genes, and siRNA-mediated depletion of Ago2 interfered with cytokine-induced growth inhibition. CONCLUSION: IFN-γ and TNF induce a stable cell cycle arrest of cancer cells that is accompanied by a fast nuclear Ago2 translocation and repression of Ago2-regulated cell cycle control genes. As Ago2 downregulation impairs cytokine-induced growth regulation, Ago2 may contribute to tissue homeostasis in human cancers.


Subject(s)
Argonaute Proteins/metabolism , Cellular Senescence , Cytokines/metabolism , Neoplasms/metabolism , Active Transport, Cell Nucleus , Cell Proliferation , Cell Survival , Humans , Interferon-gamma/metabolism , MCF-7 Cells , Tumor Necrosis Factors/metabolism
6.
J Allergy Clin Immunol ; 142(5): 1403-1414, 2018 11.
Article in English | MEDLINE | ID: mdl-29596939

ABSTRACT

Immune checkpoints are accessory molecules that either promote or inhibit T-cell activation. Two inhibitory molecules, cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed cell death protein 1 (PD-1), got high attention, as inhibition of CTLA-4 or PD-1 signaling provides the first immune therapy that significantly improves the survival of patients with metastatic solid cancers. Inhibition of CTLA-4 or PD-1 was first studied in and approved for patients with metastatic melanoma. Blocking immune checkpoints is also efficient in non-small-cell lung cancer, renal cell cancers, hypermutated gastrointestinal cancers, and others. Immune responses, whether directed against infections or against tumors, are divided into 2 phases: an initiation phase and an activation phase, where the immune system recognizes a danger signal and becomes activated by innate signals to fight the danger. This reaction is fundamental for the control of infections and cancer, but needs to be turned off once the danger is controlled, because persistence of this activation ultimately causes severe tissue damage. Therefore, each activation of the immune system is followed by a termination phase, where endogenous immune suppressor molecules arrest immune responses to prevent harmful damage. In the case of cancer immune therapies, therapeutic approaches classically enhanced the initiation and activation of immune responses to increase the emergence and the efficacy of cytotoxic T lymphocytes (CTL) against cancers. In sharp contrast, immune checkpoint blockade focuses on the termination of immune responses by inhibiting immune suppressor molecules. It thus prevents the termination of immune responses or even awakes those CTLs that became exhausted during an immune response. Therefore, blocking negatively regulating immune checkpoints restores the capacity of exhausted CTL to kill the cancer they infiltrate. In addition, they drive surviving cancer cells into a still poorly defined state of dormancy. As the therapy also awakes self-reactive CTL, one downside of the therapy is the induction of organ-specific autoimmune diseases. The second downside is the exorbitant drug price that withdraws patients in need from a therapy that was developed by academic research, which impairs further academic treatment development and financially charges the public health system.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , CTLA-4 Antigen/antagonists & inhibitors , Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Animals , Antineoplastic Agents, Immunological/adverse effects , Autoimmune Diseases/chemically induced , Humans , Interferons/immunology , Neoplasms/immunology , T-Lymphocytes/immunology , Tumor Microenvironment/immunology
7.
Cancer Metastasis Rev ; 36(2): 357-365, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28391403

ABSTRACT

The immune response is a first-line systemic defense to curb tumorigenesis and metastasis. Much effort has been invested to design antitumor interventions that would boost the immune system in its fight to defeat or contain cancerous growth. Tumor vaccination protocols, transfer of tumor-associated-antigen-specific T cells, T cell activity-regulating antibodies, and recombinant cytokines are counted among a toolbox filled with immunotherapeutic options. Although the mechanistic underpinnings of tumor immune control remain to be deciphered, these are studied with the goal of cancer cell destruction. In contrast, tumor dormancy is considered as a dangerous equilibrium between cell proliferation and cell death. There is, however, emerging evidence that tumor immune control can be achieved in the absence of overt cancer cell death. Here, we propose cytokine-induced senescence (CIS) by transfer of T helper-1 cells (TH1) or by recombinant cytokines as a novel therapeutic intervention for cancer treatment. Immunity-induced senescence triggers a stable cell cycle arrest of cancer cells. It engages the immune system to construct defensive, isolating barriers around tumors, and prevents tumor growth through the delivery or induction of TH1-cytokines in the tumor microenvironment. Keeping cancer cells in a non-proliferating state is a strategy, which directly copes with the lost homeostasis of aggressive tumors. As most studies show that even after efficient cancer therapies minimal residual disease persists, we suggest that therapies should include immune-mediated senescence for cancer surveillance. CIS has the goal to control the residual tumor and to transform a deadly disease into a state of silent tumor persistence.


Subject(s)
Cytokines/immunology , Neoplasms/immunology , Animals , Cell Growth Processes/immunology , Cellular Senescence/immunology , Cytokines/pharmacology , Humans , Monitoring, Immunologic , Neoplasms/pathology , Neoplasms/therapy , T-Lymphocytes, Helper-Inducer/immunology
8.
J Dtsch Dermatol Ges ; 14(1): 28-37, 2016 Jan.
Article in English, German | MEDLINE | ID: mdl-26713633

ABSTRACT

Forty years of research have brought about the development of antibodies that induce effective antitumor immune responses through sustained activation of the immune system. These "immune checkpoint inhibitors" are directed against immune inhibitory molecules, such as cytotoxic T lymphocyte antigen 4 (CTLA-4), programmed death 1 (PD-1) or programmed death ligand 1 (PD-L1). Disruption of the PD-1/PD-L1 interaction improves the intermediate-term prognosis even in patients with advanced stage IV melanoma. One and a half years after treatment initiation, 30-60 % of these patients are still alive. While cancer immunotherapies usually do not eradicate metastases completely, they do cause a regression by 20-80 %. It is well established that the immune system is able to kill tumor cells, and this has also been demonstrated for immunotherapies. Preclinical data, however, has shown that anti-cancer immunity is not limited to killing cancer cells. Thus, through interferon gamma and tumor necrosis factor, the immune system is able to induce stable tumor growth arrest, referred to as senescence. Ensuring patient survival by long-term stabilization of metastatic growth will therefore become a central goal of antitumor immunotherapies. This therapeutic approach is effective in melanoma and non-small-cell lung cancer. Once immunotherapies also have an indication for common cancer types, drug prices will have to drop considerably in order to be able to keep them available to those dependent on such therapies.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , Immunotherapy/methods , Melanoma/therapy , Molecular Targeted Therapy/methods , Skin Neoplasms/therapy , Evidence-Based Medicine , Humans , Treatment Outcome
9.
Cell Cycle ; 12(19): 3146-53, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-24013429

ABSTRACT

Data from different laboratories and theoretical considerations challenge our current view on anticancer immunity. Immune cells are capable of destroying cancer cells under in vitro and in vivo conditions. Therefore, cellular immunity is considered to control cancers through mechanisms that kill cancers. Yet, therapeutic anticancer immune responses rarely delete cancers. If efficient, they rather establish a life with stable disease. This raises the question of whether killing is the sole mechanism by which immune therapy attacks cancers. Here, we show that, besides cancer eradication by cytotoxic lymphocytes, other modes of action are operative and strictly required for cancer control. We show that T helper-1 cells arrest cancer growth by driving cancers into a state of stable or permanent growth arrest, called senescence. Such immune cells establish cytokine-producing walls around developing cancers. When producing interferon-γ and tumor necrosis factor, this cytokine-induced tumor immune-surveillance keeps the cancer cells in a permanently non-proliferating state. Simultaneously, antiangiogenic chemokines cut their connections to the surrounding tissues. This strategy significantly reduces tumor burden and prolongs life of cancer-bearing animals. As human cancers also undergo senescence, the current data suggest tumor-immune surveillance through cytokine-induced senescence, instead of tumor eradication, as the more realistic and primary goal of cancer control.


Subject(s)
Neoplasms/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Antigens, Neoplasm/metabolism , CD8-Positive T-Lymphocytes/immunology , Cell Cycle Checkpoints , Cellular Senescence , Chemokines/metabolism , Humans , Immunity, Cellular , Immunotherapy , Interferon-gamma/metabolism , Neoplasms/prevention & control , Neoplasms/therapy , Tumor Necrosis Factor-alpha/metabolism
10.
Nature ; 494(7437): 361-5, 2013 Feb 21.
Article in English | MEDLINE | ID: mdl-23376950

ABSTRACT

Cancer control by adaptive immunity involves a number of defined death and clearance mechanisms. However, efficient inhibition of exponential cancer growth by T cells and interferon-γ (IFN-γ) requires additional undefined mechanisms that arrest cancer cell proliferation. Here we show that the combined action of the T-helper-1-cell cytokines IFN-γ and tumour necrosis factor (TNF) directly induces permanent growth arrest in cancers. To safely separate senescence induced by tumour immunity from oncogene-induced senescence, we used a mouse model in which the Simian virus 40 large T antigen (Tag) expressed under the control of the rat insulin promoter creates tumours by attenuating p53- and Rb-mediated cell cycle control. When combined, IFN-γ and TNF drive Tag-expressing cancers into senescence by inducing permanent growth arrest in G1/G0, activation of p16INK4a (also known as CDKN2A), and downstream Rb hypophosphorylation at serine 795. This cytokine-induced senescence strictly requires STAT1 and TNFR1 (also known as TNFRSF1A) signalling in addition to p16INK4a. In vivo, Tag-specific T-helper 1 cells permanently arrest Tag-expressing cancers by inducing IFN-γ- and TNFR1-dependent senescence. Conversely, Tnfr1(-/-)Tag-expressing cancers resist cytokine-induced senescence and grow aggressively, even in TNFR1-expressing hosts. Finally, as IFN-γ and TNF induce senescence in numerous murine and human cancers, this may be a general mechanism for arresting cancer progression.


Subject(s)
Cellular Senescence/immunology , Cytokines/immunology , Neoplasms/immunology , Neoplasms/pathology , Th1 Cells/immunology , Animals , Antigens, Polyomavirus Transforming/genetics , Antigens, Polyomavirus Transforming/metabolism , Cell Cycle , Cell Proliferation , Cyclin-Dependent Kinase Inhibitor p16/deficiency , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Disease Models, Animal , Disease Progression , Female , Humans , Interferon-gamma/immunology , Male , Mice , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Oncogenes/genetics , Phosphoserine/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism , Retinoblastoma Protein/chemistry , Retinoblastoma Protein/metabolism , STAT1 Transcription Factor/metabolism , Time Factors , Tumor Cells, Cultured , Tumor Necrosis Factor-alpha/immunology , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...