Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Endocrinology ; 165(5)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38368624

ABSTRACT

Glucoprivic feeding is one of several counterregulatory responses (CRRs) that facilitates restoration of euglycemia following acute glucose deficit (glucoprivation). Our previous work established that glucoprivic feeding requires ventrolateral medullary (VLM) catecholamine (CA) neurons that coexpress neuropeptide Y (NPY). However, the connections by which VLM CA/NPY neurons trigger increased feeding are uncertain. We have previously shown that glucoprivation, induced by an anti-glycolygic agent 2-deoxy-D-glucose (2DG), activates perifornical lateral hypothalamus (PeFLH) neurons and that expression of NPY in the VLM CA/NPY neurons is required for glucoprivic feeding. We therefore hypothesized that glucoprivic feeding and possibly other CRRs require NPY-sensitive PeFLH neurons. To test this, we used the ribosomal toxin conjugate NPY-saporin (NPY-SAP) to selectively lesion NPY receptor-expressing neurons in the PeFLH of male rats. We found that NPY-SAP destroyed a significant number of PeFLH neurons, including those expressing orexin, but not those expressing melanin-concentrating hormone. The PeFLH NPY-SAP lesions attenuated 2DG-induced feeding but did not affect 2DG-induced increase in locomotor activity, sympathoadrenal hyperglycemia, or corticosterone release. The 2DG-induced feeding response was also significantly attenuated in NPY-SAP-treated female rats. Interestingly, PeFLH NPY-SAP lesioned male rats had reduced body weights and decreased dark cycle feeding, but this effect was not seen in female rats. We conclude that a NPY projection to the PeFLH is necessary for glucoprivic feeding, but not locomotor activity, hyperglycemia, or corticosterone release, in both male and female rats.


Subject(s)
Feeding Behavior , Hypothalamus , Neurons , Neuropeptide Y , Rats, Sprague-Dawley , Animals , Female , Male , Rats , Deoxyglucose/pharmacology , Eating/drug effects , Eating/physiology , Feeding Behavior/drug effects , Glucose/metabolism , Hypothalamic Area, Lateral/metabolism , Hypothalamic Area, Lateral/drug effects , Hypothalamic Hormones/metabolism , Hypothalamus/metabolism , Hypothalamus/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Melanins/metabolism , Neurons/metabolism , Neurons/drug effects , Neuropeptide Y/metabolism , Neuropeptide Y/pharmacology , Neuropeptides/metabolism , Orexins/metabolism , Pituitary Hormones/metabolism , Receptors, Neuropeptide Y/metabolism , Receptors, Neuropeptide Y/genetics , Ribosome Inactivating Proteins, Type 1/pharmacology , Saporins/pharmacology
2.
Am J Physiol Regul Integr Comp Physiol ; 316(4): R406-R416, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30726118

ABSTRACT

Neuropeptide Y (NPY), peptide YY (PYY), and their cognate receptors (YR) are expressed by subpopulations of central and peripheral nervous system neurons. Intracerebroventricular injections of NPY or PYY increase food intake, and intrahypothalamic NPY1 or NPY5 receptor agonist injections also increase food intake. In contrast, injection of PYY in the periphery reduces food intake, apparently by activating peripheral Y2R. The dorsal vagal complex (DVC) of the hindbrain is the site where vagal afferents relay gut satiation signals to the brain. While contributions of the DVC are increasingly investigated, a role for DVC YR in control of food intake has not been examined systematically. We used in situ hybridization to confirm expression of Y1R and Y2R, but not Y5R, in the DVC and vagal afferent neurons. We found that nanoinjections of a Y2R agonist, PYY-(3-36), into the DVC significantly increased food intake over a 4-h period in satiated male rats. PYY-(3-36)-evoked food intake was prevented by injection of a selective Y2R antagonist. Injection of a Y1R/Y5R-preferring agonist into the DVC failed to increase food intake at doses reported to increase food intake following hypothalamic injection. Finally, injection of PYY-(3-36) into the DVC prevented reduction of 30-min food intake following intraperitoneal injection of cholecystokinin (CCK). Our results indicate that activation of DVC Y2R, unlike hypothalamic or peripheral Y2R, increases food intake. Furthermore, in the context of available electrophysiological observations, our results are consistent with the hypothesis that DVC Y2R control food intake by dampening vagally mediated satiation signals in the DVC.


Subject(s)
Cholecystokinin/pharmacology , Eating/drug effects , Receptors, Neuropeptide Y/agonists , Satiation/drug effects , Vagus Nerve/drug effects , Animals , Injections , Male , Peptide YY/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Neuropeptide Y/antagonists & inhibitors , Receptors, Neuropeptide Y/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...