Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
J Exp Med ; 221(5)2024 May 06.
Article in English | MEDLINE | ID: mdl-38497819

ABSTRACT

The mycobiota are a critical part of the gut microbiome, but host-fungal interactions and specific functional contributions of commensal fungi to host fitness remain incompletely understood. Here, we report the identification of a new fungal commensal, Kazachstania heterogenica var. weizmannii, isolated from murine intestines. K. weizmannii exposure prevented Candida albicans colonization and significantly reduced the commensal C. albicans burden in colonized animals. Following immunosuppression of C. albicans colonized mice, competitive fungal commensalism thereby mitigated fatal candidiasis. Metagenome analysis revealed K. heterogenica or K. weizmannii presence among human commensals. Our results reveal competitive fungal commensalism within the intestinal microbiota, independent of bacteria and immune responses, that could bear potential therapeutic value for the management of C. albicans-mediated diseases.


Subject(s)
Candidiasis , Gastrointestinal Microbiome , Humans , Animals , Mice , Symbiosis , Immunosuppression Therapy
2.
Sci Rep ; 13(1): 19998, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37968574

ABSTRACT

Deuterium metabolic imaging (DMI) is a promising tool for investigating a tumor's biology, and eventually contribute in cancer diagnosis and prognosis. In DMI, [6,6'-2H2]-glucose is taken up and metabolized by different tissues, resulting in the formation of HDO but also in an enhanced formation of [3,3'-2H2]-lactate at the tumor site as a result of the Warburg effect. Recent studies have shown DMI's suitability to highlight pancreatic cancer in murine models by [3,3'-2H2]-lactate formation; an important question is whether DMI can also differentiate between these tumors and pancreatitis. This differentiation is critical, as these two diseases are hard to distinguish today radiologically, but have very different prognoses requiring distinctive treatments. Recent studies have shown the limitations that hyperpolarized MRI faces when trying to distinguish these pancreatic diseases by monitoring the [1-13C1]-pyruvate→[1-13C1]-lactate conversion. In this work, we explore DMI's capability to achieve such differentiation. Initial tests used a multi-echo (ME) SSFP sequence, to identify any metabolic differences between tumor and acute pancreatitis models that had been previously elicited very similar [1-13C1]-pyruvate→[1-13C1]-lactate conversion rates. Although ME-SSFP provides approximately 5 times greater signal-to-noise ratio (SNR) than the standard chemical shift imaging (CSI) experiment used in DMI, no lactate signal was observed in the pancreatitis model. To enhance lactate sensitivity further, we developed a new, weighted-average, CSI-SSFP approach for DMI. Weighted-average CSI-SSFP improved DMI's SNR by another factor of 4 over ME-SSFP-a sensitivity enhancement that sufficed to evidence natural abundance 2H fat in abdominal images, something that had escaped the previous approaches even at ultrahigh (15.2 T) MRI fields. Despite these efforts to enhance DMI's sensitivity, no lactate signal could be detected in acute pancreatitis models (n = 10; [3,3'-2H2]-lactate limit of detection < 100 µM; 15.2 T). This leads to the conclusion that pancreatic tumors and acute pancreatitis may be clearly distinguished by DMI, based on their different abilities to generate deuterated lactate.


Subject(s)
Pancreatic Neoplasms , Pancreatitis , Mice , Humans , Animals , Deuterium , Pancreatitis/diagnostic imaging , Acute Disease , Disease Models, Animal , Magnetic Resonance Imaging/methods , Pancreatic Neoplasms/diagnostic imaging , Lactic Acid/metabolism , Pyruvic Acid/metabolism
4.
Nature ; 622(7981): 164-172, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37674082

ABSTRACT

Development of immunocompetent T cells in the thymus is required for effective defence against all types of pathogens, including viruses, bacteria and fungi. To this end, T cells undergo a very strict educational program in the thymus, during which both non-functional and self-reactive T cell clones are eliminated by means of positive and negative selection1.Thymic epithelial cells (TECs) have an indispensable role in these processes, and previous studies have shown the notable heterogeneity of these cells2-7. Here, using multiomic analysis, we provide further insights into the functional and developmental diversity of TECs in mice, and reveal a detailed atlas of the TEC compartment according to cell transcriptional states and chromatin landscapes. Our analysis highlights unconventional TEC subsets that are similar to functionally well-defined parenchymal populations, including endocrine cells, microfold cells and myocytes. By focusing on the endocrine and microfold TEC populations, we show that endocrine TECs require Insm1 for their development and are crucial to maintaining thymus cellularity in a ghrelin-dependent manner; by contrast, microfold TECs require Spib for their development and are essential for the generation of thymic IgA+ plasma cells. Collectively, our study reveals that medullary TECs have the potential to differentiate into various types of molecularly distinct and functionally defined cells, which not only contribute to the induction of central tolerance, but also regulate the homeostasis of other thymus-resident populations.


Subject(s)
Self Tolerance , T-Lymphocytes , Thymus Gland , Animals , Mice , Cell Differentiation , Epithelial Cells/cytology , Epithelial Cells/metabolism , Self Tolerance/immunology , Self Tolerance/physiology , T-Lymphocytes/classification , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Thymus Gland/cytology , Thymus Gland/immunology , Parenchymal Tissue , Muscle Cells , Endocrine Cells , Chromatin , Transcription, Genetic , Ghrelin
5.
EMBO J ; 42(2): e111869, 2023 01 16.
Article in English | MEDLINE | ID: mdl-36245281

ABSTRACT

Mucus is made of enormous mucin glycoproteins that polymerize by disulfide crosslinking in the Golgi apparatus. QSOX1 is a catalyst of disulfide bond formation localized to the Golgi. Both QSOX1 and mucins are highly expressed in goblet cells of mucosal tissues, leading to the hypothesis that QSOX1 catalyzes disulfide-mediated mucin polymerization. We found that knockout mice lacking QSOX1 had impaired mucus barrier function due to production of defective mucus. However, an investigation on the molecular level revealed normal disulfide-mediated polymerization of mucins and related glycoproteins. Instead, we detected a drastic decrease in sialic acid in the gut mucus glycome of the QSOX1 knockout mice, leading to the discovery that QSOX1 forms regulatory disulfides in Golgi glycosyltransferases. Sialylation defects in the colon are known to cause colitis in humans. Here we show that QSOX1 redox control of sialylation is essential for maintaining mucosal function.


Subject(s)
Glycosyltransferases , Golgi Apparatus , Intestinal Mucosa , Oxidoreductases Acting on Sulfur Group Donors , Animals , Mice , Colon/metabolism , Disulfides/metabolism , Glycoproteins , Glycosyltransferases/metabolism , Golgi Apparatus/metabolism , Mucins/chemistry , Mucins/metabolism , Oxidoreductases Acting on Sulfur Group Donors/metabolism , Intestinal Mucosa/metabolism
6.
J Am Vet Med Assoc ; 261(3): 384-390, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36476412

ABSTRACT

OBJECTIVE: To evaluate the efficiency and safety of a doramectin-based treatment protocol in dogs affected by intraspinal spirocercosis (Spirocerca lupi). ANIMALS: Client-owned dogs that were admitted to a veterinary hospital during 2021 to 2022 with acute onset of neurological signs and diagnosed with intraspinal spirocercosis. All dogs underwent complete neurological evaluation, CSF analysis, PCR confirmation of CNS S lupi infection, and follow-up evaluation of at least 6 months. PROCEDURES: Upon diagnosis, dogs were treated with doramectin at a dose of 400 µg/kg, SC, q 24 h for 3 consecutive days, followed by the same dose once a week for 6 weeks. Prednisone was administered at a dose of 1 mg/kg, PO, q 24 h and tapered every 3 days. Antimicrobial clindamycin was administered at a dose of 12.5 mg/kg, PO, q 12 h for 7 days to reduce the risk of secondary spinal cord infection. Short- and long-term outcomes (1 week to 56 months) were recorded. RESULTS: 8 dogs fulfilled the inclusion criteria, 7 of which presented with neurological deficits and 1 with cervical pain. Initiation of treatment was associated with stopping the deterioration in 7 of 8 dogs. Seven dogs improved and 6 recovered ambulation. One dog was euthanized due to lack of improvement. Six of the recovered dogs were still ataxic on the last follow-up examination at 6 to 56 months. No adverse effects of the drug were noted. CLINICAL RELEVANCE: Frequent administration of doramectin was found to be safe and effective in preventing neurological deterioration in dogs with intraspinal spirocercosis.


Subject(s)
Dog Diseases , Thelazioidea , Dogs , Animals , Ivermectin/pharmacology , Ivermectin/therapeutic use , Polymerase Chain Reaction/veterinary , Clinical Protocols , Dog Diseases/diagnosis
7.
Cell ; 185(18): 3290-3306.e25, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35988542

ABSTRACT

In vitro cultured stem cells with distinct developmental capacities can contribute to embryonic or extraembryonic tissues after microinjection into pre-implantation mammalian embryos. However, whether cultured stem cells can independently give rise to entire gastrulating embryo-like structures with embryonic and extraembryonic compartments remains unknown. Here, we adapt a recently established platform for prolonged ex utero growth of natural embryos to generate mouse post-gastrulation synthetic whole embryo models (sEmbryos), with both embryonic and extraembryonic compartments, starting solely from naive ESCs. This was achieved by co-aggregating non-transduced ESCs, with naive ESCs transiently expressing Cdx2 or Gata4 to promote their priming toward trophectoderm and primitive endoderm lineages, respectively. sEmbryos adequately accomplish gastrulation, advance through key developmental milestones, and develop organ progenitors within complex extraembryonic compartments similar to E8.5 stage mouse embryos. Our findings highlight the plastic potential of naive pluripotent cells to self-organize and functionally reconstitute and model the entire mammalian embryo beyond gastrulation.


Subject(s)
Embryonic Stem Cells , Gastrulation , Animals , Cell Differentiation/physiology , Embryo, Mammalian/physiology , Embryonic Development , Endoderm , Mammals , Mice
8.
Dev Cell ; 56(8): 1182-1194.e6, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33773101

ABSTRACT

Pyruvate dehydrogenase kinases (PDK1-4) inhibit the TCA cycle by phosphorylating pyruvate dehydrogenase complex (PDC). Here, we show that PDK family is dispensable for murine embryonic development and that BCKDK serves as a compensatory mechanism by inactivating PDC. First, we knocked out all four Pdk genes one by one. Surprisingly, Pdk total KO embryos developed and were born in expected ratios but died by postnatal day 4 because of hypoglycemia or ketoacidosis. Moreover, PDC was phosphorylated in these embryos, suggesting that another kinase compensates for PDK family. Bioinformatic analysis implicated branched-chain ketoacid dehydrogenase kinase (Bckdk), a key regulator of branched-chain amino acids (BCAAs) catabolism. Indeed, knockout of Bckdk and Pdk family led to the loss of PDC phosphorylation, an increase in PDC activity and pyruvate entry into the TCA cycle, and embryonic lethality. These findings reveal a regulatory crosstalk hardwiring BCAA and glucose catabolic pathways, which feed the TCA cycle.


Subject(s)
Citric Acid Cycle , Embryonic Development , Protein Kinases/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Pyruvate Dehydrogenase Complex/metabolism , Animals , Animals, Newborn , Embryo Loss/enzymology , Embryo Loss/pathology , Gene Deletion , Hypoglycemia/complications , Hypoglycemia/enzymology , Hypoglycemia/pathology , Ketosis/complications , Ketosis/enzymology , Ketosis/pathology , Mice, Knockout , Models, Biological , Phosphorylation , Pyruvic Acid/metabolism
9.
Autophagy ; 17(10): 3082-3095, 2021 10.
Article in English | MEDLINE | ID: mdl-33218264

ABSTRACT

Mutations in the coding sequence of human TECPR2 were recently linked to spastic paraplegia type 49 (SPG49), a hereditary neurodegenerative disorder involving intellectual disability, autonomic-sensory neuropathy, chronic respiratory disease and decreased pain sensitivity. Here, we report the generation of a novel CRISPR-Cas9 tecpr2 knockout (tecpr2-/-) mouse that exhibits behavioral pathologies observed in SPG49 patients. tecpr2-/- mice develop neurodegenerative patterns in an age-dependent manner, manifested predominantly as neuroaxonal dystrophy in the gracile (GrN) and cuneate nuclei (CuN) of the medulla oblongata in the brainstem and dorsal white matter column of the spinal cord. Age-dependent correlation with accumulation of autophagosomes suggests compromised targeting to lysosome. Taken together, our findings establish the tecpr2 knockout mouse as a potential model for SPG49 and ascribe a new role to TECPR2 in macroautophagy/autophagy-related neurodegenerative disorders.


Subject(s)
Autophagosomes , Carrier Proteins , Nerve Tissue Proteins , Neuroaxonal Dystrophies , Animals , Autophagosomes/metabolism , Autophagy/genetics , Carrier Proteins/genetics , Humans , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics
10.
Prog Neurobiol ; 197: 101939, 2021 02.
Article in English | MEDLINE | ID: mdl-33152398

ABSTRACT

Gaucher disease (GD) is currently the focus of considerable attention due primarily to the association between the gene that causes GD (GBA) and Parkinson's disease. Mouse models exist for the systemic (type 1) and for the acute neuronopathic forms (type 2) of GD. Here we report the generation of a mouse that phenotypically models chronic neuronopathic type 3 GD. Gba-/-;Gbatg mice, which contain a Gba transgene regulated by doxycycline, accumulate moderate levels of the offending substrate in GD, glucosylceramide, and live for up to 10 months, i.e. significantly longer than mice which model type 2 GD. Gba-/-;Gbatg mice display behavioral abnormalities at ∼4 months, which deteriorate with age, along with significant neuropathology including loss of Purkinje neurons. Gene expression is altered in the brain and in isolated microglia, although the changes in gene expression are less extensive than in mice modeling type 2 disease. Finally, bone deformities are consistent with the Gba-/-;Gbatg mice being a genuine type 3 GD model. Together, the Gba-/-;Gbatg mice share pathological pathways with acute neuronopathic GD mice but also display differences that might help understand the distinct disease course and progression of type 2 and 3 patients.


Subject(s)
Gaucher Disease , Purkinje Cells , Animals , Brain , Disease Models, Animal , Gaucher Disease/genetics , Glucosylceramidase/genetics , Humans , Mice
11.
J Neurosci Methods ; 351: 108999, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33189793

ABSTRACT

BACKGROUND: Experimental autoimmune encephalomyelitis (EAE) induced by the myelin oligodendrocyte glycoprotein (MOG) peptide 35-55, is a widely used multiple sclerosis (MS) model. Unlike the spontaneous occurrence of MS, in EAE, external immunization with the MOG peptide (200-300 µg/mouse), emulsified in adjuvant enriched with Mycobacterium Tuberculosis (MT) H37Ra (100-500 µg mouse), and pertussis toxin (PTx, 200-500 ng/mouse) injections, are applied, which heavily boosts the immune system. NEW METHOD: A detailed and systematic titration of the MOG 35-55 EAE induction protocol in C57BL/6 mice reveals the minimal doses of the MOG 35-55 peptide, MT H37Ra, and PTx, required for disease manifestation. RESULTS: The amounts of MOG 35-55 peptide, MT H37Ra, and PTx can be drastically reduced from the standard protocol, to level of 5 µg MOG, 25 µg MT H37Ra, and 50 ng PTx, without affecting the clinical manifestations. The titrated protocols induced a high disease incidence and a consistent robust disease course, with full histopathological characteristics of the MOG model, inflammation, demyelination and axonal damage. COMPARISON WITH EXISTING METHODS: Similar disease incidences, day of symptoms appearance, maximal clinical score, and histopathology were obtained for the standard and the titrated protocols. CONCLUSIONS: Reducing the reagent dosages used for EAE induction, without attenuating the disease, can give a truer and less artificial perspective of MS. We propose an improved protocol for this extensively used model, with high disease incidence, a consistent robust course, and characteristic histological manifestations, which may be more sensitive for testing therapeutic modalities, cost-effective, and less distressing to the animals.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Mice , Mice, Inbred C57BL , Myelin-Oligodendrocyte Glycoprotein , Peptide Fragments
12.
J Vet Intern Med ; 34(6): 2687-2690, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33098319

ABSTRACT

Tracheal intubation (TI) is a common procedure that rarely entails life-threatening complications. A 1.5-year-old female spayed cat presented with acute signs of respiratory distress 5 weeks after undergoing TI. Radiographs revealed a marked, segmental, tracheal narrowing. A hard, 5-cm-long, white-yellowish tissue was identified and removed from the trachea, with subsequent resolution of clinical signs and radiographic changes. Microscopically, the tissue consisted of fibrin and lytic neutrophils, interspaced with optically empty cavities and a few remains of talcum powder and hair shafts. Consequently, a diagnosis of obstructive fibrinous tracheal pseudomembrane (OFTP) was made. A rare complication of TI in humans, OFTP should also be suspected in cats with respiratory distress, a history of TI and radiographic evidence of tracheal narrowing. Based on cases from other species and the cat described herein, the condition can be easily resolved with OFTP removal.


Subject(s)
Airway Obstruction , Cat Diseases , Airway Obstruction/etiology , Airway Obstruction/veterinary , Animals , Bronchoscopy/veterinary , Cat Diseases/diagnostic imaging , Cats , Dyspnea/etiology , Dyspnea/veterinary , Female , Intubation, Intratracheal/veterinary , Trachea
13.
PLoS One ; 15(5): e0233044, 2020.
Article in English | MEDLINE | ID: mdl-32453801

ABSTRACT

Mice deficient in the transcription factor Runx3 develop a multitude of immune system defects, including early onset colitis. This paper demonstrates that Runx3 is expressed in colonic mononuclear phagocytes (MNP), including resident macrophages (RM) and dendritic cell subsets (cDC2). Runx3 deletion in MNP causes early onset colitis due to their impaired maturation. Mechanistically, the resulting MNP subset imbalance leads to up-regulation of pro-inflammatory genes as occurs in IL10R-deficient RM. In addition, RM and cDC2 display a marked decrease in expression of anti-inflammatory/TGF ß-regulated genes and ß-catenin signaling associated genes, respectively. MNP transcriptome and ChIP-seq data analysis suggest that a significant fraction of genes affected by Runx3 loss are direct Runx3 targets. Collectively, Runx3 imposes intestinal immune tolerance by regulating maturation of colonic anti-inflammatory MNP, befitting the identification of RUNX3 as a genome-wide associated risk gene for various immune-related diseases in humans, including gastrointestinal tract diseases such as Crohn's disease and celiac.


Subject(s)
Colitis/immunology , Colon/immunology , Core Binding Factor Alpha 3 Subunit/genetics , Mononuclear Phagocyte System/immunology , Animals , Cell Differentiation , Colitis/genetics , Disease Models, Animal , Humans , Mice , Receptors, Interleukin-10/genetics , Signal Transduction , Transforming Growth Factor beta/metabolism , Up-Regulation , beta Catenin/metabolism
14.
Bone ; 136: 115360, 2020 07.
Article in English | MEDLINE | ID: mdl-32278070

ABSTRACT

The R51Q mutation in sorting nexin 10 (SNX10) was shown to cause a lethal genetic disease in humans, namely autosomal recessive osteopetrosis (ARO). We describe here the first R51Q SNX10 knock-in mouse model and show that mice homozygous for this mutation exhibit massive, early-onset, and widespread osteopetrosis. The mutant mice exhibit multiple additional characteristics of the corresponding human disease, including stunted growth, failure to thrive, missing or impacted teeth, occasional osteomyelitis, and a significantly-reduced lifespan. Osteopetrosis in this model is the result of osteoclast inactivity that, in turn, is caused by absence of ruffled borders in the mutant osteoclasts and by their inability to secrete protons. These results confirm that the R51Q mutation in SNX10 is a causative factor in ARO and provide a model system for studying this rare disease.


Subject(s)
Osteopetrosis , Animals , Mice , Mutation/genetics , Osteoclasts , Osteopetrosis/diagnostic imaging , Osteopetrosis/genetics , Sorting Nexins/genetics
15.
PLoS Pathog ; 16(1): e1008262, 2020 01.
Article in English | MEDLINE | ID: mdl-31971979

ABSTRACT

Mouse kidney parvovirus (MKPV) is a member of the provisional genus Chapparvovirus that causes renal disease in immune-compromised mice, with a disease course reminiscent of polyomavirus-associated nephropathy in immune-suppressed kidney transplant patients. Here we map four major MKPV transcripts, created by alternative splicing, to a common initiator region, and use mass spectrometry to identify "p10" and "p15" as novel chapparvovirus accessory proteins produced in MKPV-infected kidneys. p15 and the splicing-dependent putative accessory protein NS2 are conserved in all near-complete amniote chapparvovirus genomes currently available (from mammals, birds and a reptile). In contrast, p10 may be encoded only by viruses with >60% amino acid identity to MKPV. We show that MKPV is kidney-tropic and that the bat chapparvovirus DrPV-1 and a non-human primate chapparvovirus, CKPV, are also found in the kidneys of their hosts. We propose, therefore, that many mammal chapparvoviruses are likely to be nephrotropic.


Subject(s)
Kidney/virology , Parvoviridae Infections/veterinary , Parvoviridae Infections/virology , Parvovirinae/physiology , Rodent Diseases/virology , Viral Proteins/metabolism , Viral Tropism , Animals , Humans , Mice , Parvovirinae/genetics , Viral Proteins/genetics
16.
Vet Pathol ; 57(2): 281-285, 2020 03.
Article in English | MEDLINE | ID: mdl-31763954

ABSTRACT

This report presents a novel canine condition in 32 dogs in which aberrant migration of Spirocerca lupi larvae through mesenteric arteries, instead of gastric arteries, led to small or large intestinal infarction. This form of spirocercosis was first recognized in Israel in 2013 and is currently ongoing. Typical clinical signs were anorexia and weakness of 3 to 4 days and, less frequently, vomiting and diarrhea, followed by collapse, bloody diarrhea, and severe vomiting. Exploratory laparotomy showed 1 or more infarcted and often perforated intestinal segments in all cases. Microscopically, there was intestinal mucosal to transmural coagulative necrosis and mesenteric multifocal necrotizing eosinophilic arteritis, thrombosis, hemorrhage, and early fibroplasia. Third-stage S. lupi larvae were identified by morphologic features in 9 of 32 (28%) cases, and the species was confirmed by polymerase chain reaction in 4 cases. Nearly 50% of the dogs had been receiving prophylactic therapy, which did not prevent this form of spirocercosis.


Subject(s)
Dog Diseases/parasitology , Hemorrhage/veterinary , Infarction/veterinary , Polyarteritis Nodosa/veterinary , Spirurida Infections/veterinary , Thelazioidea/isolation & purification , Thrombosis/veterinary , Animals , Dog Diseases/pathology , Dogs , Female , Hemorrhage/parasitology , Hemorrhage/pathology , Infarction/parasitology , Infarction/pathology , Intestines/parasitology , Intestines/pathology , Israel , Larva , Male , Mesenteric Arteries/parasitology , Mesenteric Arteries/pathology , Polyarteritis Nodosa/parasitology , Polyarteritis Nodosa/pathology , Polymerase Chain Reaction/veterinary , Spirurida Infections/parasitology , Spirurida Infections/pathology , Thelazioidea/genetics , Thrombosis/parasitology , Thrombosis/pathology
17.
Vet Parasitol ; 253: 16-21, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29604997

ABSTRACT

Spirocerca lupi is a nematode infecting dogs mostly in tropical and subtropical areas. Although its typical target is the esophageal wall, aberrant migration is not uncommon, including migration of unknown incidence into the spinal cord. While successful treatment of intraspinal S. lupi (ISSL) infection depends on early diagnosis, tools for definitive ante-mortem diagnosis are unavailable. We therefore aimed at characterizing clinical signs and clinical pathology findings of ISSL in dogs. For that, we analyzed medical records of dogs hospitalized in 2005-2016 presenting with neurological signs consistent with ISSL, which were diagnosed definitively post-mortem. Retrieved information included signalment, medical history, chief complaint, physical and neurological evaluation, neuroanatomical localization at presentation, clinical pathology, imaging findings, treatment, outcome and post-mortem findings. Ten midsize to large breed dogs were included, 7 of which had received prophylactic treatment. In all 10 dogs, onset was acute and neurological deterioration until presentation (2 h-6 d) was fast. Neurological examination localized the lesions within the spinal cord and paresis or paralysis was asymmetric in all dogs. Spinal pain was documented in 9/10 dogs. Cerebrospinal fluid (CSF) analysis was abnormal in all dogs and was characterized by pleocytosis in 8/10, whereas cytology revealed the presence of eosinophils in all dogs. Advanced imaging excluded spinal cord compression in all dogs tested. Post-mortem examination detected spinal cord migration tract in all cases. Nematodes were found in the spinal cord parenchyma (8/10) or adjacent to it (2/10) in all dogs. A larva was found in the subarachnoid space of one dog and an adult nematode in the thoracic intervertebral artery of another. Esophageal nodules were found in 5/10 dogs. These findings suggest that the combination of sudden onset of acute asymmetric paresis accompanied by pain, presence of eosinophils in the CSF and lack of compressive lesion may serve as sufficient evidence for tentative diagnosis of ISSL in endemic areas.


Subject(s)
Dog Diseases/pathology , Spirurida Infections/veterinary , Thelazioidea/isolation & purification , Animals , Dog Diseases/parasitology , Dogs , Female , Male , Risk Factors , Spinal Cord/parasitology , Spinal Cord/pathology , Spirurida Infections/parasitology , Spirurida Infections/pathology
18.
Sci Rep ; 7: 44401, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28276496

ABSTRACT

Mitochondrial Carrier Homolog 2 (MTCH2) is a novel regulator of mitochondria metabolism, which was recently associated with Alzheimer's disease. Here we demonstrate that deletion of forebrain MTCH2 increases mitochondria and whole-body energy metabolism, increases locomotor activity, but impairs motor coordination and balance. Importantly, mice deficient in forebrain MTCH2 display a deficit in hippocampus-dependent cognitive functions, including spatial memory, long term potentiation (LTP) and rates of spontaneous excitatory synaptic currents. Moreover, MTCH2-deficient hippocampal neurons display a deficit in mitochondria motility and calcium handling. Thus, MTCH2 is a critical player in neuronal cell biology, controlling mitochondria metabolism, motility and calcium buffering to regulate hippocampal-dependent cognitive functions.


Subject(s)
Calcium/metabolism , Cognition/physiology , Hippocampus/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Neurons/metabolism , Animals , Energy Metabolism/physiology , Female , Hippocampus/physiopathology , Locomotion/physiology , Long-Term Potentiation/physiology , Male , Maze Learning/physiology , Mice , Mice, Knockout , Mitochondria/genetics , Mitochondria/pathology , Mitochondrial Membrane Transport Proteins/deficiency , Neurons/pathology , Postural Balance/physiology , Prosencephalon/metabolism , Prosencephalon/physiopathology , Psychomotor Disorders/metabolism , Psychomotor Disorders/physiopathology , Rotarod Performance Test , Spatial Memory/physiology , Synaptic Transmission/physiology
19.
Parasit Vectors ; 9(1): 246, 2016 05 10.
Article in English | MEDLINE | ID: mdl-27160919

ABSTRACT

BACKGROUND: Leishmania major is a main cause of cutaneous leishmaniasis in humans in an area that stretches from India through Central Asia, the Middle East, to North and West Africa. In Israel, it is a common infection of humans with rodents as the reservoir hosts and Phlebotomus papatasi as its sand fly vector. FINDINGS: A 6 months old spayed female mixed breed dog was referred to the Hebrew University Veterinary Teaching Hospital with a large ulcerative dermal lesion on the muzzle, and lesions in the foot pads and left hind leg. Histopathology of a skin biopsy found chronic lymphohistiocytic dermatitis with the presence of Leishmania spp. amastigotes in the muzzle. Physical examination indicated that the dog was overall in a good clinical condition and the main findings were the skin lesions and enlarged prescapular lymph nodes. Complete blood count and serum biochemistry profile were within reference ranges. Serology by ELISA was positive for Leishmania spp. and PCR of the prescapular lymph node was positive by an ITS1 region PCR-high resolution melt analysis. However, the melt curve and subsequent DNA sequencing indicated that infection was caused by L. major and not L. infantum, which is the main causative agent of canine leishmaniosis in the Mediterranean region. DNA was extracted from the paraffin embedded muzzle biopsy and PCR with sequencing also indicated L. major. The dog's young age and the absence of hyperglobulinemia and anemia were not typical of L. infantum infection. The dog was treated with allopurinol and the skin lesions improved and later disappeared when the dog was re-evaluated. CONCLUSIONS: This is the first molecularly-confirmed case of L. major infection in a dog. Two previous reports of L. major in dogs originated from Saudi-Arabia and Egypt in 1985 and 1987 were confirmed by enzymatic biochemical techniques. Serology for L. infantum was positive probably due to the well documented serological cross-reactivity between Leishmania spp. Although dogs and wild carnivores are not considered main reservoirs for L. major, the possibility of clinical canine disease and their potential as secondary hosts should be investigated in areas endemic for human L. major infection.


Subject(s)
Dog Diseases/diagnosis , Leishmania major/immunology , Leishmaniasis, Cutaneous/veterinary , Phlebotomus/parasitology , Animals , Dog Diseases/drug therapy , Dog Diseases/parasitology , Dogs , Enzyme-Linked Immunosorbent Assay/veterinary , Female , Israel , Leishmania major/genetics , Leishmania major/isolation & purification , Leishmaniasis, Cutaneous/diagnosis , Leishmaniasis, Cutaneous/drug therapy , Leishmaniasis, Cutaneous/parasitology , Phylogeny , Polymerase Chain Reaction/veterinary , Sequence Analysis, DNA/veterinary , Skin/parasitology , Skin/pathology
20.
EMBO J ; 35(6): 685-98, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26884587

ABSTRACT

Monocytes have emerged as critical driving force of acute inflammation. Here, we show that inhibition of Toll-like receptor 2(TLR2) dimerization by a TLR2 transmembrane peptide (TLR2-p) ameliorated DSS-induced colitis by interfering specifically with the activation of Ly6C(+) monocytes without affecting their recruitment to the colon. We report that TLR2-p directly interacts with TLR2 within the membrane, leading to inhibition of TLR2-TLR6/1 assembly induced by natural ligands. This was associated with decreased levels of extracellular signal-regulated kinases (ERK) signaling and reduced secretion of pro-inflammatory cytokines, such as interleukin (IL)-6, IL-23, IL-12, and IL-1ß. Altogether, our study provides insights into the essential role of TLR2 dimerization in the activation of pathogenic pro-inflammatory Ly6C(hi) monocytes and suggests that inhibition of this aggregation by TLR2-p might have therapeutic potential in the treatment of acute gut inflammation.


Subject(s)
Colitis/pathology , Colon/immunology , Monocytes/drug effects , Monocytes/immunology , Protein Multimerization , Toll-Like Receptor 2/antagonists & inhibitors , Toll-Like Receptor 2/metabolism , Animals , Antigens, Ly/analysis , Colitis/chemically induced , Cytokines/metabolism , Disease Models, Animal , Immunophenotyping , MAP Kinase Signaling System , Mice, Inbred C57BL , Monocytes/chemistry , Toll-Like Receptor 6/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...