Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 81(1): 1-9, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32293583

ABSTRACT

Membrane bioreactor (MBR) models are useful tools for both design and management. The system complexity is high due to the involved number of processes which can be clustered in biological and physical ones. Literature studies are present and need to be harmonized in order to gain insights from the different studies and allow system optimization by applying a control. This position paper aims at defining the current state of the art of the main integrated MBR models reported in the literature. On the basis of a modelling review, a standardized terminology is proposed to facilitate the further development and comparison of integrated membrane fouling models for aerobic MBRs.


Subject(s)
Bioreactors , Membranes, Artificial , Models, Theoretical
2.
Water Res ; 44(15): 4272-94, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20619870

ABSTRACT

Membrane bioreactors (MBRs) have been increasingly employed for municipal and industrial wastewater treatment in the last decade. The efforts for modelling of such wastewater treatment systems have always targeted either the biological processes (treatment quality target) as well as the various aspects of engineering (cost effective design and operation). The development of Activated Sludge Models (ASM) was an important evolution in the modelling of Conventional Activated Sludge (CAS) processes and their use is now very well established. However, although they were initially developed to describe CAS processes, they have simply been transferred and applied to MBR processes. Recent studies on MBR biological processes have reported several crucial specificities: medium to very high sludge retention times, high mixed liquor concentration, accumulation of soluble microbial products (SMP) rejected by the membrane filtration step, and high aeration rates for scouring purposes. These aspects raise the question as to what extent the ASM framework is applicable to MBR processes. Several studies highlighting some of the aforementioned issues are scattered through the literature. Hence, through a concise and structured overview of the past developments and current state-of-the-art in biological modelling of MBR, this review explores ASM-based modelling applied to MBR processes. The work aims to synthesize previous studies and differentiates between unmodified and modified applications of ASM to MBR. Particular emphasis is placed on influent fractionation, biokinetics, and soluble microbial products (SMPs)/exo-polymeric substances (EPS) modelling, and suggestions are put forward as to good modelling practice with regard to MBR modelling both for end-users and academia. A last section highlights shortcomings and future needs for improved biological modelling of MBR processes.


Subject(s)
Bioreactors , Sewage/chemistry , Waste Disposal, Fluid/methods , Water Purification/methods , Algorithms , Filtration , Membranes, Artificial , Models, Chemical , Waste Disposal, Fluid/instrumentation , Water Purification/instrumentation
3.
Water Res ; 42(19): 4761-70, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18929390

ABSTRACT

A simple model for evaluating energy demand arising from aeration of an MBR is presented based on a combination of empirical data for the membrane aeration and biokinetic modelling for the biological aeration. The model assumes that aeration of the membrane provides a proportion of the dissolved oxygen demanded for the biotreatment. The model also assumes, based on literature information sources, a linear relationship between membrane permeability and membrane aeration up to a threshold value, beyond which permeability is unchanged with membrane aeration. The model was benchmarked against two full-scale plant to obtain the most appropriate and conservative value of the slope of the flux:aeration curve and the blower efficiency. Benchmarking in this way produced a match to within 20% of all key process plant operational parameters. The model demonstrated that significant reductions in aeration energy could be obtained through operation at lower flux and reducing the membrane aeration requirement accordingly, so-called "proportional aeration" at lower flows. Similarly, increasing oxygen transfer from membrane aeration would also be expected to decrease energy demand. A sensitivity analysis of some of the key parameters revealed that, of the key operating parameters, loading, SOTE and MLSS concentration remain the most critical in determining energy demand. It is suggested that a key parameter representing membrane aeration in MBRs is the mean in-module air upflow velocity U, since this gives a reasonable representation of the shear applied through membrane aeration. U was found to vary between 0.04 and 0.1m/s across a number of modern large pilot and full-scale plant. An analysis reveals that significant reductions in energy demand are attained through operating at lower MLSS levels and membrane fluxes. Evidence provided from recent controlled pilot trials implies that halving the flux can reduce the aeration is suggested whereby the number of membrane tanks on line and/or the membrane aeration intensity is adjusted according to the flow, and thus flux, so as to reduce the overall aeration energy demand.


Subject(s)
Air , Bioreactors , Membranes, Artificial , Models, Theoretical
4.
Water Sci Technol ; 57(3): 457-63, 2008.
Article in English | MEDLINE | ID: mdl-18309227

ABSTRACT

Systematically testing alternative cleaning agents and cleaning procedures on a large scale municipal membrane bioreactor, the Erftverband optimized the cleaning strategies and refined the original cleaning procedures for the hollow fiber membranes in use. A time-consuming, intensive ex-situ membrane cleaning twice a year was initially the regular routine. By introducing the effective means of cleaning in place in use today, which employs several acidic and oxidative/alkaline cleaning steps, intensive membrane cleaning could be delayed for years. An overview and an assessment of various cleaning strategies for large scale plants are given.


Subject(s)
Bioreactors , Inorganic Chemicals/chemistry , Membranes, Artificial , Acids/chemistry , Oxidation-Reduction , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...