Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 792: 148146, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34146806

ABSTRACT

The use of willow plantations can be a sustainable approach for treating primary municipal wastewater, potentially reducing both the environmental and economic burdens associated with conventional treatment. However, the impact of wastewater irrigation upon the willow biorefinery potential has not yet been established. To investigate this effect, three-year-old field grown willows were harvested from plots kept as either controls or irrigated with primary municipal wastewater effluent at 29.5 million L ha-1 yr-1. Biomass compositional analysis, ionic liquid pretreatment and enzymatic saccharification were assessed and differential abundance of persistent extractable phytochemicals was evaluated using untargeted metabolite profiling. Glucan significantly increased by 8% in wastewater treated trees, arabinose and galactose were significantly decreased by 8 and 29%, respectively, while xylose, mannose and lignin content were unaltered. Ionic liquid pretreatment and enzymatic saccharification efficiencies did not vary significantly, releasing >95% of the cell wall glucose and recovering 35% of the lignin. From a total of 213 phytochemical features, 83 were significantly depleted and 14 were significantly enriched due to wastewater irrigation, including flavonoids and lignan derivatives. Considered alongside increased biomass yield from wastewater irrigation (+200%), lignocellulosic bioenergy yields increased to 8.87 t glucose ha-1 yr-1 and 1.89 t ha-1 yr-1 recovered lignin, while net extractives yields increased to 1.48 t ha-1 yr-1, including phytochemicals of interest. The maintenance of glucose accessibility after low-cost ionic liquid pretreatment is promising evidence that sustainable lignocellulose bioenergy production can complement wastewater treatment. Untargeted metabolite assessment revealed some of the phytochemical toolkit employed by wastewater irrigated willows, including accumulation of flooding and salinity tolerance associated flavonoids glabraoside A and glabrene. The extractable phytochemicals underpin a novel high biomass phenotype in willow and, alongside lignocellulosic yields, could help enhance the economic feasibility of this clean wastewater treatment biotechnology through integration with sustainable biorefinery.


Subject(s)
Ionic Liquids , Salix , Water Purification , Biomass , Wastewater
2.
Comput Struct Biotechnol J ; 19: 2223-2235, 2021.
Article in English | MEDLINE | ID: mdl-33995915

ABSTRACT

Maintaining astronaut health throughout long-duration spaceflight is essential to the feasibility of a manned mission to Mars. The ground-based Mars500 experiment investigated long-duration health by isolating six astronauts for 520 days, the longest controlled human confinement study conducted to date. After 520 days, astronauts had uniform strength and lean body mass losses, and increased fasting plasma glucose, calprotectin, and neutrophil levels characteristic of intestinal inflammation but previous analyses revealed no common significant changes in gut microbiota. This study reanalysed data from early (days 7-45) and late (days 420-520) faecal samples and identified 408 exact sequence variants (ESVs), including 213 shared by all astronauts. Thirty-two ESVs were significantly differentially abundant over time, including depletion of keystone resistant starch degrading, anti-inflammatory and insulin sensitivity-associated species, such as Faecalibacterium prausnitzii, Ruminococcus bromii, Blautia luti, Anaerostipes hadrus, Roseburia faecis, and Lactobacillus rogosae, and enrichment of yet-to-be-cultured bacteria. Additionally, the extraordinary experimental confinement allowed observation of microbiota potentially shared between astronauts and their habitat. Forty-nine species were shared, representing 49% and 12% of the human and environmental microbiome diversity, respectively. These findings reveal the microbiota which significantly altered in relative abundance throughout confinement, including species known to influence inflammation and host glucose homeostasis consistent with astronaut symptoms. Identification of microbiome alterations after 520 days of isolation represents a missing piece connecting Mars500 astronaut physiological studies. Knowledge of the impact of long-term confinement upon the human microbiome helps to improve our understanding of how humans interact with their habitats and is a valuable step forward towards enabling long-duration spaceflight.

3.
Sci Total Environ ; 738: 139728, 2020 Oct 10.
Article in English | MEDLINE | ID: mdl-32534285

ABSTRACT

Municipal wastewater treatment using willow 'phyto'-filtration has the potential for reduced environmental impact compared to conventional treatment practices. However, the physiological adaptations underpinning tolerance to high wastewater irrigation in willow are unknown. A one-hectare phytofiltration plantation established using the Salix miyabeana cultivar 'SX67' in Saint-Roch-de-l'Achigan, Quebec, Canada, tested the impact of unirrigated, potable water or two loads of primary effluent wastewater 19 and 30 ML ha-1 yr-1. A nitrogen load of 817 kg N ha-1 from wastewater did not increase soil pore water nitrogen concentrations beyond Quebec drinking water standards. The willow phytofiltration phenotype had increased leaf area (+106-142%) and leaf nitrogen (+94%) which were accompanied by significant increases in chlorophyll a + b content. Wastewater irrigated trees had higher stomatal sizes and a higher stomatal pore index, despite lower stomatal density, resulting in increased stomatal conductance (+42-78%). These developmental responses led to substantial increases in biomass yields of 56-207% and potable water controls revealed the nitrogen load to be necessary for the high productivity of 28-40 t ha-1 yr-1 in wastewater irrigated trees. Collectively, this study suggests phytofiltration plantations could treat primary effluent municipal wastewater at volumes of at least 19 million litres per hectare and benefit from increased yields of sustainable biomass over a two-year coppice cycle. Added-value cultivation practices, such as phytofiltration, have the potential to mitigate negative local and global environmental impact of wastewater treatment while providing valuable services and sustainable bioproducts.


Subject(s)
Salix , Biomass , Canada , Chlorophyll A , Plant Leaves , Quebec , Wastewater
4.
Sci Total Environ ; 711: 135067, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-31818595

ABSTRACT

Human industrial activities have left millions of hectares of land polluted with trace element metals and persistent organic pollutants (POPs) around the world. Although contaminated sites are environmentally damaging, high economic costs often discourage soil remediation efforts. Phytoremediation is a potential green technology solution but can be challenging due to the diversity of anthropogenic contaminants. Co-cropping could provide improved tolerance to diverse soil challenges by taking advantage of distinct crop capabilities. Co-cropping of three species with potentially complementary functions, Festuca arundinacea, Salix miyabeana and Medicago sativa, perform well on diversely contaminated soils. Here, rhizosphere microbiomes of each crop in monoculture and in all co-cropping combinations were compared using 16S rRNA gene amplification, sequencing and differential abundance analysis. The hyperaccumulating F. arundinacea rhizosphere microbiome included putative plant growth promoting bacteria (PGPB) and metal tolerance species, such as Rhizorhapis suberifaciens, Cellvibrio fibrivorans and Pseudomonas lini. The rhizosphere microbiome of the fast-growing tree S. miyabeana included diverse taxa involved in POP degradation, including the species Phenylobacterium panacis. The well-characterised nitrogen-fixing M. sativa microbiome species, Sinorhizobium meliloti, was identified alongside others involved in nutrient acquisition and putative yet-to-be-cultured Candidatus saccharibacteria (TM7-1 group). The majority of differentially abundant rhizosphere-associated bacterial species were maintained in co-cropping pairs, with pairs having higher numbers of differentially abundant taxa than monocultures in all cases. This was not the case when all three crops were co-cropped, where most host-specific bacterial species were not detected as differentially abundant, indicating the potential for reduced rhizosphere functionality. The crops cultivated in pairs here retained rhizosphere microbiome bacteria involved in these monoculture ecosystem services of plant growth promotion, POP tolerance and degradation, and improved nutrient acquisition. These findings provide a promising outlook of the potential for complementary co-cropping strategies for phytoremediation of the multifaceted anthropogenic pollution which can disastrously affect soils around the world.


Subject(s)
Microbiota , Soil Microbiology , Biodegradation, Environmental , Plant Roots , RNA, Ribosomal, 16S , Rhizosphere , Soil , Soil Pollutants
5.
Microbiome ; 6(1): 53, 2018 03 21.
Article in English | MEDLINE | ID: mdl-29562928

ABSTRACT

BACKGROUND: One method for rejuvenating land polluted with anthropogenic contaminants is through phytoremediation, the reclamation of land through the cultivation of specific crops. The capacity for phytoremediation crops, such as Salix spp., to tolerate and even flourish in contaminated soils relies on a highly complex and predominantly cryptic interacting community of microbial life. METHODS: Here, Illumina HiSeq 2500 sequencing and de novo transcriptome assembly were used to observe gene expression in washed Salix purpurea cv. 'Fish Creek' roots from trees pot grown in petroleum hydrocarbon-contaminated or non-contaminated soil. All 189,849 assembled contigs were annotated without a priori assumption as to sequence origin and differential expression was assessed. RESULTS: The 839 contigs differentially expressed (DE) and annotated from S. purpurea revealed substantial increases in transcripts encoding abiotic stress response equipment, such as glutathione S-transferases, in roots of contaminated trees as well as the hallmarks of fungal interaction, such as SWEET2 (Sugars Will Eventually Be Exported Transporter). A total of 8252 DE transcripts were fungal in origin, with contamination conditions resulting in a community shift from Ascomycota to Basidiomycota genera. In response to contamination, 1745 Basidiomycota transcripts increased in abundance (the majority uniquely expressed in contaminated soil) including major monosaccharide transporter MST1, primary cell wall and lamella CAZy enzymes, and an ectomycorrhiza-upregulated exo-ß-1,3-glucanase (GH5). Additionally, 639 DE polycistronic transcripts from an uncharacterised Enterobacteriaceae species were uniformly in higher abundance in contamination conditions and comprised a wide spectrum of genes cryptic under laboratory conditions but considered putatively involved in eukaryotic interaction, biofilm formation and dioxygenase hydrocarbon degradation. CONCLUSIONS: Fungal gene expression, representing the majority of contigs assembled, suggests out-competition of white rot Ascomycota genera (dominated by Pyronema), a sometimes ectomycorrhizal (ECM) Ascomycota (Tuber) and ECM Basidiomycota (Hebeloma) by a poorly characterised putative ECM Basidiomycota due to contamination. Root and fungal expression involved transcripts encoding carbohydrate/amino acid (C/N) dialogue whereas bacterial gene expression included the apparatus necessary for biofilm interaction and direct reduction of contamination stress, a potential bacterial currency for a role in tripartite mutualism. Unmistakable within the metatranscriptome is the degree to which the landscape of rhizospheric biology, particularly the important but predominantly uncharacterised fungal genetics, is yet to be discovered.


Subject(s)
Biodegradation, Environmental , Hydrocarbons/metabolism , Plant Roots/microbiology , Salix/metabolism , Salix/microbiology , Soil Pollutants/metabolism , Ascomycota/genetics , Ascomycota/growth & development , Ascomycota/metabolism , Basidiomycota/genetics , Basidiomycota/growth & development , Basidiomycota/metabolism , Enterobacteriaceae/genetics , Enterobacteriaceae/growth & development , Enterobacteriaceae/metabolism , Environmental Pollution/analysis , Gene Expression Regulation, Bacterial/genetics , Gene Expression Regulation, Fungal/genetics , Gene Expression Regulation, Plant/genetics , Glucan 1,3-beta-Glucosidase/metabolism , Glutathione Transferase/metabolism , Plant Roots/enzymology , Soil/chemistry , Soil Microbiology , Trees/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...